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Abstract

NeuroArch is a database for codifying knowledge about fruit fly brain cir-
cuits. It is designed with two user communities in mind: (i) neurobiolo-
gists interested in querying the database to address questions regarding neu-
roanatomy, neural circuits, neurons, synapses, neurotransmitters, and gene ex-
pression, and (ii) computational neuroscientists interested in the instantiation
of models of neural circuits and architectures, their program execution, and
validation of hypotheses regarding brain function. A key aim of NeuroArch
is to provide an interface between the concerns of these two communities. To
this end, NeuroArch defines a data model for representation of both biological
data and model structure and the relationships between them within a single
graph database. When coupled with a powerful interface for querying both
types of data within the database in a uniform manner, this representation
enables neurobiologists to benefit from high-level organization of fruit fly data,
while model designers can capitalize upon the integration of biological data
from multiple sources. This document describes the requirements and design
of NeuroArch, and details how it can be used with the Neurokernel framework
to accelerate collaborative development of models of the fruit fly brain. A brief
discussion of future development plans is also provided.

Neurokernel RFC #5 v1.0 DOI:10.5281/zenodo.44225

http://www.bionet.ee.columbia.edu
http://dx.doi.org/10.5281/zenodo.44225


CONTENTS 2

Contents
1 Introduction 4

2 Data Representation Requirements 5
2.1 Information to be Represented . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Biological Circuit Entities . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Executable Circuit Entities . . . . . . . . . . . . . . . . . . . . 7

2.2 Biological Circuit Query Requirements . . . . . . . . . . . . . . . . . 8
2.3 Executable Circuits Query Requirements . . . . . . . . . . . . . . . . 9

3 Data Model 10
3.1 Biological Circuit Data and Its Subdivisions . . . . . . . . . . . . . . 10
3.2 Naming Scheme for Biological Data . . . . . . . . . . . . . . . . . . . 11
3.3 Data and Abstractions for Executable Circuits . . . . . . . . . . . . . 11
3.4 Combined Hierarchy of Biological and Executable Circuit Entities . . 12

4 Mapping the Data Model into an Object Graph Database 14
4.1 Supported Relationships . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Storage of Biological Data Objects . . . . . . . . . . . . . . . . . . . 16
4.3 Storage of Executable Circuit Data Objects . . . . . . . . . . . . . . 17
4.4 Naming and Storage of Multiple Model Versions . . . . . . . . . . . . 17

4.4.1 Relating Biological Data to Modeling Data . . . . . . . . . . . 17
4.5 An Example - Representation of the Lamina and Retina . . . . . . . 17

5 NeuroArch Application Programming Interface 22
5.1 Object Graph Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Supported Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Support for Operations on Query Results . . . . . . . . . . . . . . . . 24
5.4 Multimodal Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.5 Interface to Neurokernel . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Testing Neuroarch’s Functionality 26

7 Summary and Future Plans 26
7.1 Model Construction Using Composition Operations . . . . . . . . . . 27
7.2 Using NeuroArch Data for Neurokernel Resource Allocation . . . . . 28
7.3 Support for Input/Output File Formats . . . . . . . . . . . . . . . . . 29

Neurokernel RFC #5 v1.0 DOI:10.5281/zenodo.44225

http://dx.doi.org/10.5281/zenodo.44225


CONTENTS 3

7.4 Online Data Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.5 Performance Assessment . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.6 Graphical/Visualization Frontend . . . . . . . . . . . . . . . . . . . . 30
7.7 Support for Dynamic Models . . . . . . . . . . . . . . . . . . . . . . . 31
7.8 Storing Model States . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Acknowledgements 31

Neurokernel RFC #5 v1.0 DOI:10.5281/zenodo.44225

http://dx.doi.org/10.5281/zenodo.44225


4

1 Introduction
The Neurokernel framework enables collaboration between multiple researchers to ac-
celerate the development of fly brain models [9]. However, it lacks several elements
essential to the efficient translation of biological knowledge into fruit fly circuit mod-
els and their subsequent refinement based upon model execution results.

Construction of neuropil models in the Neurokernel environment currently re-
quires either manual implementation of the models in Python or specification of the
graph of neuron and synapse model instances along with their required parameter
values in a supported format such as the Graph Exchange Format (GEXF) 1. The ad
hoc construction of models from biological data complicates and hampers revision
of models in light of either execution results or new experimental knowledge. More-
over, the various available fruit fly datasets employ multiple storage formats that
cannot always be easily queried. These include but are not limited to data relating
to the connectome, morphology, genetics, simulation specification, and physiology.
The lack of common representation of domain knowledge hinders interaction and
collaboration which ultimately slows the progress in the field.

NeuroArch is a software package that addresses the above limitations by provid-
ing a database for specification and storage of both biological data regarding the
fruit fly brain and executable models built upon that data within a single graph
database. NeuroArch employs a data model that preserves the structural and se-
mantic relationships between different biological and modeling objects. Its query
interface provides an object-graph mapping (OGM) that exploits this data model
to enable both neurobiologists and neural circuit model designers to easily perform
sophisticated queries relevant to their respective needs without having to explicitly
specify complex query strings. NeuroArch aims to not only be useful to both neu-
robiologists and neural circuit modelers individually, but also serve as an interface
between them.

The explosion in available experimental neuroscience data and increasing number
of neural circuit models developed in recent years has motivated the development of
a range of data repositories and neuroinformatic tools for publicly sharing neurobi-
ological and modeling data with the research community. These range from down-
loadable connectome datasets [2, 3] to platforms designed to clearly annotate and
classify biological structures in the fly brain, aid directed and intelligent online access
to anatomical and genetic data, integrate and synthesize data from multiple sources,
and enable new and enhanced analyses of available data [1, 4, 5, 6, 7, 8, 18, 23]. These
are paralleled by databases and related technologies for specifying and disseminating

1http://www.gexf.net
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neural models [10, 11, 12, 14]. NeuroArch aspires to prosecute similar goals as these
projects, but within the more focused context of combining biological data, metadata
annotations, and model structures into linked ontologies specific to a single organ-
ism that can enable both neurobiological inquiries spanning different ontologies and
construction of more accurate and comprehensive brain models informed by multiple
data sources.

NeuroArch also bears similarity to Bio4j, an open-source platform for integration
of open bioinformatic datasets using typed graph models [19]. Like NeuroArch, Bio4j
aims to link biological data (e.g., protein sequences) with semantic data (e.g., protein
functional annotations, gene ontologies, organism taxonomies, enzyme nomenclature)
from multiple sources within a single graph database to enable reasoning based upon
the structure of the data in addition to the individual data points. Bio4j provides a
data model that addresses how elements from different data sources are connected
in order to obtain conclusions not achievable using a single unintegrated source; it
also provides a Domain Specific Language (DSL) to facilitate creation of the complex
database queries required to navigate the various types of graph elements.

The remainder of this RFC is organized as follows: in § 2, we describe NeuroArch’s
high level requirements for data representation. We propose a data model based
upon these requirements in § 3, and describe the mapping of this model into a graph
database in § 4. In § 5, we discuss features of NeuroArch’s API that exploit the data
model to fulfill some of the requirements described in § 2, and present demonstrations
of the API’s functionality in § 6. Finally, we provide a summary and discuss plans
for future development of NeuroArch in § 7.

2 Data Representation Requirements

2.1 Information to be Represented

NeuroArch’s database must be able to store data regarding both neurobiological
circuits and the design of executable neural circuits that model their biological coun-
terparts. The former includes data such as neuron and synapse structure and charac-
teristics from sources such as EM reconstruction, transgenic lines and genetic data;
the latter includes parameters of constituent component models and abstractions
that describe a neural circuit’s architecture. Since data regarding the same biologi-
cal entities may be provided by different experimental data sources, NeuroArch must
support concurrent representation of biological data with different origins to enable
the incompleteness of data from one source to be complemented by data from a differ-
ent source. Similarly, NeuroArch must support concurrent representation of multiple

Neurokernel RFC #5 v1.0 DOI:10.5281/zenodo.44225

http://dx.doi.org/10.5281/zenodo.44225


2.1 Information to be Represented 6

versions of a single circuit designed by different parties or containing different design
variations.

2.1.1 Biological Circuit Entities

Entities corresponding to biological data NeuroArch must support are listed below.
Some of these entities correspond to sets or subdivisions of other biological entities,
while others correspond to attributes of other entities.

Arborization Data Data regarding the arborization of dendrites within specific
brain regions, e.g., the identity of the neurons that arborize within a specific glomeru-
lus in the protocerebral bridge and the polarity of their respective neurites. This
geometric data may be less detailed than neuron morphology data.

Biological Sensor A set of sensory neurons such as photoreceptors, olfactory sen-
sory neurons, or mechanosensory cells.

Chemical Synapse A neurotransmitter-mediated connection between two neu-
rons. Henceforth referred to as a synapse in the remainder of this RFC.

Data Source The source (e.g., a lab or research group) of a set of biological fly
brain data.

Gap Junction A non-chemical connection between two neurons.

Genetic Data Data regarding the genetic line associated with other biological
entities such as neurons or synapses.

Neural Circuit Motif A brain circuit other than (and typically smaller than) a
neuropil, e.g., cartridge (in lamina), column (in medulla), channel (in antennal lobe),
etc.

Neuron Morphology Data Data describing a neuron’s geometry.

Neuron A single neuron, e.g., Tm-1, L1, etc.
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Neuropil Any named anatomical region of the fly brain, e.g., lamina, medulla, etc.
[15].

Neurotransmitter Associated with a specific neuron or synapse, e.g., histamine,
acetylcholine, GABA, etc.

Species The species associated with a given set of biological data, e.g., D. melano-
gaster, D. simulans, D. busckii, etc.

Tracts A bundle of neuron axons at the mesoscopic scale, i.e., information regard-
ing the individual neurons in the bundle may be absent even if knowledge regarding
the endpoints and total number of axons is known.

2.1.2 Executable Circuit Entities

Entities required to represent executable circuit designs are listed below. Some of
these entities represent architectural abstractions, while others (such as model pa-
rameters) correspond to attributes of other entities.

Axon Model An instance of a model of a neuron’s axon.

Axon Hillock Model An instance of a model of a neuron’s axon hillock, e.g.,
Leaky Integrate-and-Fire, Hodgkin-Huxley, Morris-Lecar (configured to emit spikes),
etc.

Circuit Motif Model An instance of a neural circuit model, e.g., canonical cir-
cuits, composition rules in the fly vision system [16].

Communication Port A single input or output channel of an LPU model or
pattern.

Dendrite Model An instance of a model of a neuron’s dendrites.

Gap Junction Model An instance of a model of a gap junction between two
neurons.
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2.2 Biological Circuit Query Requirements 8

Inter-LPU Connectivity Pattern An instance of the connectivity between the
ports exposed by two LPUs’ interfaces.

LPU or Pattern Interface A set of ports exposed by an LPU or pattern for
communication with those in the interfaces of other LPUs or patterns.

LPU An instance of a model of a specific neuropil that owns the objects that
describe its internal design.

Membrane Model An instance of a model describing a neuron’s membrane volt-
age, e.g., Morris-Lecar configured to not emit spikes.

Model Parameters Parameters associated with a functional model of structures
such as a neuron, synapse, or gap junction.

Model Version An identifier distinguishing one version of an LPU or inter-LPU
connectivity pattern from other instances of the same LPU or pattern.

Neuron Model An instance of a model of an entire neuron. This entity owns
other entities that correspond to models of specific components of a neuron.

Synapse Model An instance of a model of a chemical synapse between two neu-
rons.

2.2 Biological Circuit Query Requirements

1. The database should be able to store information from a variety of sources, e.g.,
EM reconstruction, transgenic lines, genetic data, etc. It should be possible to
retrieve the data associated with a specific biological object that originates in
different data sources.

2. NeuroArch must support querying of all stored biological data. For exam-
ple, a neurobiologist should be able to retrieve all neurons associated with a
particular genetic line whose neurotransmitter profile differs from that of the
corresponding neurons in the wild type fruit fly.
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3. Queries should be expressible in a high-level and intuitive fashion that enables
neurobiologists to access high-level subdivisions (e.g., cartridges and columns
in the vision neuropils) as well as lower level components such as neurons and
synapses.

4. Queries should be able to incorporate and handle ‘fuzzy’ information. For
example, it should be possible to represent data regarding a population of
neurons with a characteristic associated with some fraction of the population
rather than with individually identified neurons.

5. Queries should support names of biological structures and their synonyms as
defined in existing anatomical ontologies [7].

6. NeuroArch should support representation of the confidence level of a dataset.
For example, the confidence associated with synaptic connections inferred from
overlapping arborizations should be assigned a lower level of confidence than
that of connections obtained from EM reconstruction.

7. Data from multiple sources should be integrated such that queries can seam-
lessly traverse multiple sources even if the sources overlap or one dataset lacks
information present in another dataset, e.g., one should be able to query neu-
rons in multiple connected neuropils even if the data for those neuropils origi-
nates in different datasets.

2.3 Executable Circuits Query Requirements

1. NeuroArch must support defining and manipulating models whose respective
internal structures may employ labeling schemes that potentially contain a
greater or lesser number of abstraction levels than other models.

2. It should be possible to use biological information stored in NeuroArch to
generate or update information of executable models of LPUs.

3. Queries in NeuroArch should be able to span all levels of model abstraction and
access biological as well as modeling data. For example, it should be possible to
retrieve the neurotransmitter profiles of the synapse model instances comprised
by an LPU.

4. Data stored in NeuroArch should be accessible and/or modifiable in multiple
modes suitable for different applications, i.e., as a subgraph (to preserve graph
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relationships amongst components in the query results) or a table (to facilitate
tabular or relational manipulations of the query results).

5. To enable circuit model execution, model objects defined in NeuroArch must
correspond to code in Neurokernel’s draft LPU implementation that numeri-
cally realize those models.

3 Data Model
NeuroArch’s data model distinguishes between the representation of biological cir-
cuit data and executable circuit data. It employs two interconnected hierarchies to
represent the information described in § 2.1. These hierarchies describe how entities
at one level of granularity/abstraction are defined in terms of entities at some lower
level of granularity/abstraction.

3.1 Biological Circuit Data and Its Subdivisions

Biological data in NeuroArch may be described at multiple levels of structural subdi-
visions that partition the data into subsets of increasingly finer granularity (Tab. 1).
Subdivisions unique to specific neuropils (e.g., Cartridge, Column, Channel, etc.)
may also be defined by the data model. Some of the information described in § 2.1.1
is deemed to be attributes of specific entities in the data model and therefore does
not appear in Tab. 1.

Level Name Contains

Highest DataSource GapJunction, Neuron, Synapse
Species Neuropil

...
BioSensor Circuit
Neuropil Circuit
Tract Circuit

... Circuit GapJunction, Neuron, Synapse

Lowest
GapJunction
Neuron
Synapse

Table 1: Containment relationships between biological circuit entities in NeuroArch’s
data model.
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3.2 Naming Scheme for Biological Data 11

3.2 Naming Scheme for Biological Data

Every biological entity defined in the fruit fly brain (some of which may correspond
to sets of other entities) must be assigned a unique name. The naming scheme
should in principle be extensible to other model organisms, e.g., C. elegans, zebra
fish, mouse, etc. Unique names should include identifying information about the
successive levels of subdivision associated with the entity in question (§ 2.1.1); this
can be done employing a naming syntax analogous to that employed in Uniform
Resource Identifiers (URIs) that exploits the hierarchy of subdivisions described in
§ 3.1:

/Species/BioSensor/Circuit/Neuron

/Species/Neuropil/Circuit/Neuron

/Species/Tract

Synapse and gap junction names should be based upon names of the neurons they
connect, e.g., Dm2_C3 could denote a synapse between presynaptic neuron Dm2 and
postsynaptic neuron C3. Synapse and gap junction names must be able to distinguish
between multiple synapses or gap junctions between two neurons. For example, the
following identifiers could be assigned to synapses between R1 photoreceptors in a
specific cartridge of the retina and L1 neurons in the corresponding cartridge of the
lamina. Note that the synapse is deemed to belong to the postsynaptic neuropil, i.e.,
the lamina, rather than the retina.

/Drosophila_melanogaster/Lamina/Cartridge0/R1_L1/0
/Drosophila_melanogaster/Lamina/Cartridge0/R1_L1/1

3.3 Data and Abstractions for Executable Circuits

Data in NeuroArch that represents elements of executable circuits may be described
at multiple levels of structural abstraction (Tab. 2). As with biological data, addi-
tional objects and levels may be defined depending upon the structure of the LPU
model:
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3.4 Combined Hierarchy of Biological and Executable Circuit Entities 12

Level Name Owns
Highest Species LPU, Pattern

...
LPU CircuitModel
Pattern Interface

...
Interface Port
CircuitModel GapJunctionModel,

NeuronModel,
SynapseModel

NeuronModel AxonHillockModel,
AxonModel,
DendriteModel,
MembraneModel

Lowest

AxonHillockModel
AxonModel
DendriteModel
GapJunctionModel
MembraneModel
SynapseModel

Table 2: Ownership relationships between executable circuit entities in NeuroArch’s
data model.

3.4 Combined Hierarchy of Biological and Executable Circuit
Entities

Fig. 1 depicts the combined hierarchies of biological and executable circuit entities
supported by the data model. NeuroArch permits additional entities beyond those
described in Fig. 1 to be specified, provided that entities on all levels consistently
employ ownership relationships. This permits storage of executable circuit models
and biological datasets with differing levels of abstraction or structural detail.
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4 Mapping the Data Model into an Object Graph
Database

NeuroArch is implemented in Python and built upon the open-source database Ori-
entDB2. This backend choice was made because of OrientDB’s multi-model architec-
ture that combines graph database support with NOSQL document storage features,
its support for both a built-in SQL-like query language and the Gremlin3 graph
traversal language supported by many graph databases, and the availability of an
actively developed Python interface4 to the database. OrientDB also permits defini-
tion of node and edge types that subclass existing node and edge types; NeuroArch
exploits this feature to enable the extension of the data model to include new node
types required to represent biological structures or executable circuit elements not
defined in Tab. 1 or 2.

4.1 Supported Relationships

Relationships between nodes in NeuroArch’s database may either represent contain-
ment or ownership of one node by another (in the sense that one node represents
a physical subdivision or lower level of abstraction than the node that contains or
owns it) or the transmission of information between nodes. These relationships are
depicted in Figs. 2 and 3, respectively.

2http://orientdb.com
3http://github.com/tinkerpop/gremlin/
4http://github.com/ostico/pyorient
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AxonHillockModel

SynapseModel

MembraneModel

GapJunctionModel

DendriteModel

AxonModel

Port

Figure 3: Data transmission relationships (red) between executable circuit objects
(cyan) in NeuroArch’s database.

4.2 Storage of Biological Data Objects

Most of the objects in NeuroArch’s data model can be mapped directly into nodes
in a graph database. In order to facilitate certain queries, data attributes associated
with specific objects are mapped to additional nodes in the database that are linked
to those that represent the objects that own them. For example, a Neuron object
may own various descriptive data such as anatomical or genetic information; these
data are stored in MorphologyData, ArborizationData, and GeneticData nodes
respectively (Tab. 3).

Name Owned by
NeurotransmitterData Synapse
MorphologyData Neuron
GeneticData Neuron
ArborizationData Neuron

Table 3: Objects used to store biological data.
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4.3 Storage of Executable Circuit Data Objects

As with the biological data objects described in § 4.2, attributes of objects represent-
ing components of executable circuits may be mapped to separate nodes to facilitate
certain queries (Tab. 4).

Name Owned by
AxonParamData AxonModel
AxonHillockParamData AxonHillockModel
DendriteParamData DendriteModel
GapJunctionParamData GapJunctionModel
MembraneParamData MembraneModel
SynapseParamData SynapseModel

Table 4: Objects used to store executable circuit component data.

4.4 Naming and Storage of Multiple Model Versions

To enable the evaluation of different instances of a single neural circuit, NeuroArch
must support storage of multiple versions of each LPU and inter-LPU connectivity
pattern. Different versions of a single LPU or pattern are distinguished in Neu-
roArch’s database by attaching a Version node containing a unique identifier to each
node that respectively describe a particular version of the LPU or Pattern circuit in
question (Fig. 4). Each LPU or Pattern node instance owns its own fully independent
copy of the subgraph of lower level components that describe its version.

4.4.1 Relating Biological Data to Modeling Data

While the process of developing models of neural circuits in the fly brain requires
support for simultaneous storage of multiple versions of a single LPU, biological
data loaded from a particular data source is expected to remain static. NeuroArch
therefore must store only one copy of each biological dataset to avoid redundancy.
Each data source must be clearly identified in NeuroArch’s database (§ 2.1.1, Fig. 2).

4.5 An Example - Representation of the Lamina and Retina

As an example of how NeuroArch’s data model may be used and extended to repre-
sent specific regions in fruit fly brain, structures within the Drosophila lamina and
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Version 0

Version 1

Version
0

Version
1

LPU
Name=0

LPU
Name=0

Circuit
Name=2

Circuit
Name=1

Circuit
Name=1

Circuit
Name=0

Circuit
Name=0

Figure 4: Representation of multiple versions of a single LPU (with name 0) using an
additional Version node (yellow). Version 1 of the sample LPU differs from version
0 by virtue of the presence of an additional Circuit node in its subgraph.

retina as described in [16] can be mapped to the data model as depicted in Figs. 5
and 6 and Tab. 5.
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Ommatidium

Photoreceptor

Cartridge

GeneticData

NoncolumnarCircuit

Neuron Synapse

NeuropilBioSensor

MorphologyData

Species

NeurotransmitterData

(a) Containment relationships between biological circuit objects in the lamina and retina.
Biological circuit node types specific to the lamina and retina descended from those in Fig. 2
are listed in Tab. 5a.

NeuronModel

OmmatidiumModel

SynapseParamData

LPU

MembraneModel

MembraneParamData

CartridgeModel VersionNoncolumnarCircuitModelInterface

Species

SynapseModelPort

PhotoreceptorParamData

PhotoreceptorModel

(b) Ownership relationships between executable circuit objects in the lamina and retina.
Executable circuit node types specific to the lamina and retina descended from those in
Fig. 2 are listed in Tab. 5b.

Figure 5: Containment/ownership relationships between biological and executable
circuit database objects required to represent the lamina and retina. Rounded nodes
represent attributes of entities in NeuroArch’s data model that are mapped to nodes
in NeuroArch’s database (see Fig. 2)
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Node Type Parent Type Instance Name Examples
BioSensor Retina
Cartridge Circuit Cart1..Cart768
Neuron L1..L6, Am, Lawf, C2, C3, T1
Neuropil Lamina
NoncolumnarCircuit Circuit AmacrineCircuit
Ommatidium Circuit Cart1..Cart768
Photoreceptor Neuron R1..R6
Species D. Melanogaster
Synapse R1_L1, etc.

(a) Node types required to represent biological circuit entities in the lamina and retina.
Node Type Parent Type Instance Name Examples
CartridgeModel CircuitModel Cart1..Cart768
Interface Lamina, Retina
LPU Lamina, Retina
MembraneModel L1..L6, Am, Lawf, C2, C3, T1
MembraneParamData V1..V4, phi, etc.
NoncolumnarModel CircuitModel AmacrineCircuit
OmmatidiumModel CircuitModel Cart1..Cart768
Port /lam/gpot/out0, etc.
PhotoreceptorModel NeuronModel R1..R6
PhotoreceptorParamData MembraneParamData R1..R6
SynapseModel R1_L1, etc.
SynapseParamData power, delay, etc.
Version 0, my_lpu, etc.

(b) Node types required to represent executable circuit entities in the lamina and retina.

Table 5: Node types required to represent the lamina and retina in NeuroArch’s
database. The sample names for instances of these nodes are illustrative; other
names may be used as appropriate.

Neurokernel RFC #5 v1.0 DOI:10.5281/zenodo.44225

http://dx.doi.org/10.5281/zenodo.44225


4.5 An Example - Representation of the Lamina and Retina 21

L4 9-L2 1

L4 3-L4 13

L2 7-L4 1

L4 2-L2 0

L4 2-L2 1

L4 5-L4 15

L4 1-L4 0

L4 1-L4 6

L4 3-L2 0

L2 4-L4 3L4 3-L2 4

L2 6-L4 0

L2 6-L4 1

L4 1-L2 7

L4 1-L2 6

L4 3-L4 4

L4 4-L4 15

L2 5-L4 4

L2 5-L4 0

L4 8-L4 1

L4 2-L4 3

L4 2-L4 0 L4 0-L2 6

L4 0-L2 5

L4 0-L4 4

L4 0-L4 5

L2 0-L4 2

L2 0-L4 3

L2 1-L4 2

L2 1-L4 9

L2 1

L2 0

L2 7

L2 6

L2 5

L2 4

L4 9

L4 9-L4 2

L4 9-L4 1

L4 7-L4 6

L4 6-L4 5

L4 4-L2 5

L4 1

L4 0

L4 3

L4 2

L4 5

L4 4

L4 7

L4 6

Figure 6: Data transmission (red) relationships between a subset of the circuit design
components of the lamina LPU. This diagram only depicts the nodes corresponding
to L2 and L4 neurons in several adjacent cartridges (cyan) and synapses between
them (orange).
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5 NeuroArch Application Programming Interface
Although the OrientDB graph database employed by NeuroArch supports powerful
graph queries via its dialect of SQL and the Gremlin graph traversal language [22], the
complexity of such queries can rapidly increase depending on the number of different
elements in the database and the nature of the traversal that must be performed to
obtain the query results. To obviate the need to explicitly construct such queries,
NeuroArch provides a programming interface for generating useful queries against
stored data that does not require explicit specification of a complex low-level query
string.

5.1 Object Graph Mapping

NeuroArch exposes model data via an object graph mapping (OGM) that not only
encapsulates individually stored elements, but also enables one to perform a selection
of complex queries without having to express them in OrientDB SQL or Gremlin.
The OGM provides methods associated with each object that dynamically construct
and execute queries. This approach is similar to the concept of object relational map-
ping (ORM) used to interface with data models stored in relational databases. Two
key differences between NeuroArch’s OGM and that of currently available general-
purpose OGMs are (i) its use of the hierarchical data model described in § 3 to
enable extraction of subcircuits owned by nodes corresponding to specific subdi-
visions of biological components or circuit abstractions; (ii) the ability to use the
subgraph extracted by an OGM query as the starting point for traversals by subse-
quent queries or as an operand that may be passed to graph operators (§ 5.3). To
enable subsequent reuse of query results by subsequent queries or graph operations,
NeuroArch permits optional storage of an extracted subgraph in its graph database.
This subgraph can be discarded when no longer needed.

5.2 Supported Queries

NeuroArch’s OGM provides methods that encapsulate the following queries:

Lower Level Components Owned by a Given Object Using the ownership
hierarchy, NeuroArch can easily retrieve the tree of lower level components owned by
a specified object (or some portion thereof) up to some arbitrary number of ownership
levels. These components may in turn be used to obtain the induced subgraph if
there exist data transmission edges between those components. This functionality
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facilitates extraction of subcircuits from the biological or executable circuit data
stored in NeuroArch. For example, the subgraph of Neuron and Synapse instances
for a specified Neuropil instance may be obtained given the latter:
# Extract node corresponding to lamina neuropil; the ’graph’ object
# encapsulates the entire graph database:
lamina = graph.neuropils.query(name=’lamina ’).one()

# Find subgraph of neurons and synapses:
result = lamina.traverse_owns ([’Neuron ’, ’Synapse ’])

Higher Level Components that Own a Given Object By traversing the own-
ership hierarchy from lower level components to higher level components, NeuroArch
can determine what high-level biological subdivisions or executable circuit abstrac-
tions contain a given component. For example, one may determine which Cartridge
instance in the lamina neuropil owns a given L1 neuron represented by an Neuron
instance.

Multicriterion Filtering of Query Results Low-level graph query languages
can be used to easily extract classes of elements or elements with specific attribute
values; restricting those queries to the results of traversals that return subgraphs cor-
responding to biological or executable circuit motifs increases the complexity of the
queries required to obtain the desired results. To address this increase in complexity,
NeuroArch enables the results of a query to be qualified by simultaneous application
of multiple search criteria. For example, all neuron membrane models of L2 neurons
in the lamina with a specific model parameter value can be extracted as follows:
# Extract node corresponding to lamina LPU; the ’graph’ object
# encapsulates the entire graph database:
lamina = graph.LPUs.query(name=’lamina ’).one()

# Find subgraph of neuron membrane model instances
# and synapse model instances:
lamina_ml = lamina.traverse_owns ([’MembraneModel ’, ’SynapseModel ’])

# Restrict query to Morris -Lecar instances
# modeling L1 neurons with a specific parameter value:
result = lamina_ml.has(attrs ={’name’: ’L1’, ’phi’: 0.025} ,

classes =[’MorrisLecar ’])
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5.3 Support for Operations on Query Results

NeuroArch supports the passing of OGM query results to graph operators to enable
intuitive expression of complex queries in terms of set operations such as union,
intersection, and difference applied to the nodes in a subgraph. As an example, the
difference operator can be used to exclude all amacrine cells from the lamina LPU
circuit. If the original lamina circuit comprises executable components supported by
Neurokernel, the modified circuit may also be executed.
# Extract node corresponding to lamina LPU:
lamina = graph.lpus.query(name=’lamina ’).one()

# Extract all nodes corresponding to specific neuron membrane potential
# or conductance -based synapse models:
all_lamina_neuron_synapses = \

lamina.traverse_owns ([’MorrisLecar ’,’ConductanceSynapseModel ’])

# Find all amacrine neurons by name:
amacrine_neurons = all_lamina_neurons.has(attrs ={’name’: ’Am’})

# Obtain subgraph determined by difference of nodes:
lamina_without_amacrine = all_lamina_neurons_synapses \

- amacrine_neurons

5.4 Multimodal Views

NeuroArch’s OGM provides access to object or query result data in views that expose
both tabular and graph data structures to support different applications. NeuroArch
uses the tabular and graph data structures respectively provided by Pandas5 [17] and
NetworkX6 [13]; this enables use of the rich APIs provided by these actively developed
and widely used packages to access and/or manipulate exposed data. Multimodal
views are both readable and writable; NeuroArch can propagate modifications made
to data exposed by a view back into its database. Since NeuroArch exposes the
results of a query performed through its OGM, a view to the results of a query can
therefore seamlessly expose the data associated with multiple nodes or edges returned
by the query within a single tabular or graph data structure.

To illustrate the utility of multimodal views, consider the scenario of modifying
a particular parameter in all model instances of a particular neuron type in a model
of the lamina LPU. By exposing the model parameters of all instances of the neuron

5http://pandas.pydata.org
6http://networkx.github.io
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type in question as a Pandas DataFrame object, the object’s API may be exploited
to perform the desired modification with a single line of code:
# Extract node corresponding to lamina LPU:
lamina = graph.lpus.query(name=’lamina ’).one()

# Extract all nodes corresponding to specific neuron
# membrane potential model:
all_lamina_neurons = \

lamina.traverse_owns ([’MorrisLecar ’])

# Find all L1 neurons by name:
L1_neurons = all_lamina_neurons.has(attrs={’name’: ’L1’})

# Set phi parameter of all L1 neurons to single value:
L1_neurons.view_table[’phi’] = 0.03

# Save modifications to view:
L1_neurons.view_table_save ()

One can visualize the graph structure of the query results by exposing the same
query as a NetworkX graph:
import networkx as nx

# Convert graph to pygraphviz format and set visualization attributes:
g = L1_neurons.view_graph ()
p = nx.to_agraph(g)
p.node_attr.update ({’shape’: ’rect’, ’style’: ’filled ’})
p.draw(’L1_neurons.jpg’, prog=’circo ’)

5.5 Interface to Neurokernel

To enable evaluation of stored circuit models, NeuroArch’s API can be invoked di-
rectly by a Neurokernel emulation to instantiate and execute circuits stored in Neu-
roArch’s database. Circuit models stored in NeuroArch can only be executed if
they comprise components with numerical implementations provided by Neuroker-
nel. Since the graph structure of LPU circuit data used by the implementation of
Neurokernel described in [9] differs from that assumed by NeuroArch’s data model
(§ 3.3), NeuroArch provides graph transformation routines for converting extracted
data to the structure expected by Neurokernel. The latter routines will become un-
necessary when Neurokernel is updated to be directly compatible with NeuroArch’s
data model.
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6 Testing Neuroarch’s Functionality
To test the features described in § 5, NeuroArch was used to address the following
proof-of-concept scenarios.

Arbitrary LPUs consisting of about 100 non-spiking Morris-Lecar neurons and
Leaky Integrate-and-Fire neurons randomly connected with alpha-function and cond-
uctance-based synapses were generated using NetworkX and loaded into NeuroArch’s
database along with connectivity patterns that linked random ports exposed by each
LPU. The LPU and pattern generation algorithm was identical to that provided
in the introductory example included in the Neurokernel repository 7. NeuroArch’s
OGM was invoked within a Neurokernel emulation to extract these LPUs and pattern
circuits, convert them to the current graph structure expected by Neurokernel (§ 5.5),
and instantiate the object classes required to execute the emulation. The output was
successfully validated for a simple input signal provided to the same neurons in both
the introductory example and the NeuroArch example.

To examine more realistic circuit scenarios, we scaled up the above scenario by
increasing (i) the number of LPUs (up to 8 LPUs), (ii) the number of neurons within
each LPU (up to 10,000 per LPU), and (iii) the number of ports exposed by each LPU
(up to 10,000 per LPU). We also loaded, extracted, and executed a lamina/medulla
model comprising almost 17,000 neurons developed for Neurokernel testing purposes
8. NeuroArch was able to handle all of these scenarios, although the time required to
both load LPU data into NeuroArch’s database and retrieve it within a Neurokernel
emulation increased noticeably with the total number of components in the overall
circuit due to the nonoptimal configuration of the database and system used by
NeuroArch.

Finally, we used NeuroArch’s multimodal views to modify the parameters of select
populations of neurons and synapses within the above LPU circuits prior to extrac-
tion and execution by Neurokernel. We validated the effects of these modifications
by recording the expected perturbations of the activity of the spiking neurons of the
example LPUs and the graded potential neurons in the lamina/medulla model.

7 Summary and Future Plans
NeuroArch aims to accelerate the cycle of neural circuit modeling, design, evaluation,
and biological validation [9]. The requirements delineated in this RFC describe a

7http://github.com/neurokernel/neurokernel/tree/master/examples/intro
8http://github.com/neurokernel/vision
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minimal architecture for achieving this aim in conjunction with the model execution
support of Neurokernel. This section describes several future areas for improvement
and extension of NeuroArch’s architecture.

7.1 Model Construction Using Composition Operations

Amajor advantage of NeuroArch’s OGM (§ 5.1) is that it enables the result of a query
on existing neural circuit data to be treated as an operand that can be manipulated
by query result operators. Given that existing anatomical datasets (such as that
of the medulla from Janelia [2]) provide incomplete data regarding the structure
of neuropils, the process of inferring circuit functionality could exploit NeuroArch’s
encapsulation of query results and support for operators defined on those results
to construct more comprehensive circuit models by composing subunits that each
consist of the result of individual queries. Although such circuits can be stored in
NeuroArch’s database by fully expanding the operators and their operands into a
graph of components comprised by the current NeuroArch data model, doing so
does not store any information as to how the circuit is defined in terms of subgraphs
and operators.

To store the latter information, NeuroArch’s data model could be extended to
introduce nodes that correspond to operators and query results, the latter which
own the component nodes extracted by the query. This would enable storage of the
execution tree of operator and query result nodes that must be processed to obtain
the constructed circuit (Fig. 7). To obtain the fully equivalent graph of low-level
objects corresponding to the representation in terms of query results and operators,
NeuroArch’s query API would need to provide services that can execute the operators
stored in the database.
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(a) Representation of sample circuit in terms of operators and queries (blue) and the com-
ponents (cyan) comprised by an individual query. In this example, both queries return the
same subgraph of components.
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(b) Equivalent components of sample circuit described by queries and operators in Fig. 7a.

Figure 7: Example of how a circuit may be defined in terms of graph operators applied
to query results and the motifs extracted by individual queries. As in Figs. 2 and 3,
black edges denote ownership while red edges denote data transmission connections
between objects.

7.2 Using NeuroArch Data for Neurokernel Resource Alloca-
tion

From a performance perspective, executable circuits stored in NeuroArch could be
analyzed to estimate the computational resources required by Neurokernel to effi-
ciently run a given circuit architecture on available GPU resources. For example,
the graph of a circuit’s constituent neurons and synapses could be processed by a
graph partitioning algorithm to determine how to amortize data transmission costs
between GPUs during execution. To enable the above functionality, NeuroArch’s
API would need to provide services for extracting relevant circuit information re-
quired to compute resource requirements. NeuroArch’s data model could also be
extended to explicitly include metadata regarding the computational costs of differ-
ent executable elements in its database. For example, an instance of a point model
of a neuron’s membrane potential might be assigned a higher cost than an instance
of a passive multicompartmental model.
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7.3 Support for Input/Output File Formats

NeuroArch should support loading data from and saving data to several specification
formats such as SWC9, CSV, GEXF, NeuroML [10], NineML [20], or SpineML [21]
to

(i) facilitate importing of data in those formats into NeuroArch for use in circuit
design,

(ii) enhance interoperability with other tools that employ those formats, and

(iii) enable sharing of data between users running different NeuroArch instances
(§ 7.4).

Some of this functionality can be achieved by exploiting the import/export features
of the Python packages used by NeuroArch’s multimodal views that support some
of the above formats (§ 5.4). Loading/saving of multiple versions of a single model
should also be supported. Currently available neural circuit datasets that are in a
non-standard format (such as the medulla data from Janelia, manually constructed
annotations for a specific dataset, etc.) will require customized loaders; NeuroArch’s
API should expose Python functions and/or classes that must be used by a new data
loader to manipulate the database. This part of the API should manage creation of
new nodes and relationships in the database, handle versioning, and perform requisite
sanity checks to prevent inadvertent loading of incorrectly formatted data.

Given that NeuroArch affords researchers with the opportunity to define entirely
new modeling elements and architectural abstractions (§ 3.3) support for import/-
export of a model data specified using components defined in a fixed schema (such
as that of NeuroML) necessarily limits what sort of abstractions may be represented
in an imported/exported model specification. This limitation could be addressed by
generation/parsing of customized XML schemas alongside exported/imported mod-
els; NeuroML’s parser generation mechanism (which is used by Neurokernel’s current
support for importing NeuroML-like XML) can be exploited to address this need.

In the event that NeuroArch is extended to support storage of model execution
state snapshots (§ 7.8), its data sharing services should also be extended to provide
a way to store/load such data in a suitable file format.

9http://www.neuronland.org/NLMorphologyConverter/MorphologyFormats/SWC/Spec.
html
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7.4 Online Data Sharing

To facilitate sharing of models with other researchers, NeuroArch should provide a
service whereby biological or circuit design data stored in one NeuroArch instance
can be easily shared with other researchers. This could be achieved either

(i) by enabling loading/saving of an entire model in a suitable file format; (§ 7.3);

(ii) by enabling running NeuroArch instances to expose services on the Internet
that permit them to be queried (which should be technically possible given
that the underlying OrientDB graph database supports network access); or

(iii) by providing a service that enables models to be easily published online in a
form that can be immediately imported into other NeuroArch instances. This
service could potentially

(a) use a revision control system such as Git or Mercurial to upload data to
or retrieve data from a public repository on GitHub10 or Bitbucket11;

(b) take advantage of the API provided by the Zenodo research data sharing
service12 to automatically request a DOI for a published model that could
be made available to other researchers as the access point for obtaining
model data for immediate loading into a NeuroArch instance.

7.5 Performance Assessment

Given that complex queries performed by NeuroArch’s OGM can be computation-
ally intensive, there is a need to quantify the performance of NeuroArch’s query
mechanism and graph operator support in a range of circumstances to optimize fu-
ture performance. NeuroArch should therefore provide a means of benchmarking the
data access and manipulation services provided by its API.

7.6 Graphical/Visualization Frontend

Combining biological and circuit design data from multiple sources in a graph database
opens the doors to the development of new user applications for interacting with fly
brain data. While such applications should be developed independently of the core
NeuroArch software, the NeuroArch API must ensure that queries required by such
frontend applications will be supported.

10http://github.com
11http://bitbucket.org
12http://zenodo.org/dev
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7.7 Support for Dynamic Models

Model configurations executed by Neurokernel cannot currently change during ex-
ecution, i.e., the projected flow of model data from NeuroArch to Neurokernel is
unidirectional. This effectively precludes development of models whose parameters
or structure change over the course of model execution. Apart from enabling con-
sideration of a new class of circuit models, support for dynamically changing stored
model data could be useful in developing semiautomated model refinement systems.
To support model plasticity, NeuroArch’s API must provide low-latency services for
propagating updates to a stored model’s parameters in real-time without degrading
the performance of model execution by Neurokernel.

7.8 Storing Model States

Software debuggers provide programmers with the means of examining variable states
at times prior to termination of program execution to pinpoint the causes of anoma-
lous program behavior. The analogous ability to obtain a snapshot of a circuit
model’s states at points during execution by Neurokernel before a model has finished
running is similarly valuable to model refinement. NeuroArch’s data model could be
extended to support representation of state data associated with the components of
an executed circuit model at multiple times.
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