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Abstract

We have developed an open software platform called Neurokernel for collabora-
tive development of comprehensive models of the brain of the fruit fly Drosophila
melanogaster and their execution and testing on multiple Graphics Processing Units
(GPUs). Neurokernel provides a programming model that capitalizes upon the struc-
tural organization of the fly brain into a fixed number of functional modules to distin-
guish between these modules’ local information processing capabilities and the connec-
tivity patterns that link them. By defining mandatory communication interfaces that
specify how data is transmitted between models of each of these modules regardless
of their internal design, Neurokernel explicitly enables multiple researchers to collab-
oratively model the fly’s entire brain by integration of their independently developed
models of its constituent processing units. We demonstrate the power of Neurokernel’s
model integration by combining independently developed models of the retina and lam-
ina neuropils in the fly’s visual system and by demonstrating their neuroinformation
processing capability. We also illustrate Neurokernel’s ability to take advantage of
direct GPU-to-GPU data transfers with benchmarks that demonstrate scaling of Neu-
rokernel’s communication performance both over the number of interface ports exposed
by an emulation’s constituent modules and the total number of modules comprised by
an emulation.

This RFC obsoletes all versions of NK-RFC #1.
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1 Introduction

Reverse engineering the information processing functions of the brain is an engineering grand
challenge of immense interest that has the potential to drive important advances in computer
architecture, artificial intelligence, and medicine. The human brain is an obvious and tanta-
lizing target of this effort; however, its structural and architectural complexity place severe
limitations upon the extent to which models built and executed with currently available
computational technology can relate its biological structure to its information processing
capabilities. Successful development of human brain models must therefore be preceded by
an increased understanding of the structural/ architectural complexity of the more tractable
brains of simpler organisms and how they implement specific information processing func-
tions and govern behavior [25].

The nervous system of the fruit fly Drosophila melanogaster possesses a range of features
that recommend it as a model organism of choice for relating brain structure to function.
Despite the obvious differences in size and complexity between the mammalian and fly brains,
researchers dating back to Cajal have observed common design principles in the structure of
their sensory subsystems [56]. Many of the genes and proteins expressed in the mammalian
brain are also conserved in the genome of Drosophila [1]. These features strongly suggest
that valuable insight into the workings of the mammalian brain can be obtained by focusing
on that of Drosophila.

Remarkably, the fruit fly is capable of a host of complex nonreactive behaviors that are
governed by a brain containing only ~ 10° neurons and ~ 107 synapses organized into fewer
than 50 distinct functional units, many of which are known to be directly involved in functions
such as sensory processing, locomotion, and control [7]. The relationship between the fly’s
brain and its behaviors can be experimentally probed using a powerful toolkit of genetic
techniques for manipulation of the fly’s neural circuitry such as the GAL4 driver system
[13, 55, 61, 66, 40], recent advances in experimental methods for precise recordings of the
fly’s neuronal responses to stimuli [27, 69, 28], techniques for analyzing the fly’s behavioral
responses to stimuli [5, 39, 8], and progress in reconstruction of the fly connectome, or neural
connectivity map [9, 64]. These techniques have provided access to an immense amount of
valuable structural and behavioral data that can be used to model how the fly brain’s neural
circuitry implements processing of sensory stimuli [16, 42, 7, 24, 43, 57].

Despite considerable progress in mapping the fly’s connectome and elucidating the pat-
terns of information flow in its brain, the complexity of the fly brain’s structure and the
still-incomplete state of knowledge regarding its neural circuitry pose challenges that go be-
yond satisfying the current computational resource requirements of fly brain models. These
include (1) the need to explicitly target the information processing capabilities of functional
units in the fly brain, (2) the need for fly brain model implementations to efficiently scale
over additional hardware resources as they advance in complexity, and (3) the need for brain
modeling to be approached as an explicitly open and collaborative process of iterative refine-
ment by multiple parties similar to that successfully employed in the design of the Internet
[3] and large open source projects such as the Python programming language [67].

To address these challenges, we have developed an open source platform called Neuroker-
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nel for implementing connectome-based fly brain models and executing them upon multiple
Graphics Processing Units (GPUs). In order to achieve scaling over multiple computational
resources while providing the programmability required to model the constituent functional
modules in the fly brain, the Neurokernel architecture provides features similar to that of
an operating system kernel. In contrast to general-purpose neural simulators, the design of
Neurokernel and brain models built upon it is driven by publicly available proposals called
Requests for Comments (RFCs).

Neurokernel’s design is predicated upon the organization of the fly brain into a fixed
number of functional modules characterized by local neural circuitry. Neurokernel explicitly
enforces a programming model for implementing models of these functional modules called
Local Processing Units (LPUs) that separates between their internal design and the connec-
tivity patterns that link their external communication interfaces (APIs) independently of the
internal design of models designed by other researchers and of the connectivity patterns that
link them. This modular architecture facilitates collaboration between researchers focusing
on different functional modules in the fly brain by enabling models independently developed
by different researchers to be integrated into a single whole brain model irrespective of their
internal designs.

This paper is organized as follows. We review the anatomy of the fly brain that motivate
Neurokernel’s design in § 2.1 and describe its architecture and support for GPU resources
and programmability in § 2.2. We present Neurokernel’s programming model in § 2.3 and
detail its API in § 2.4. To illustrate the use of Neurokernel’s API, we use it to integrate
independently developed models of the retina and lamina neuropils in the fly’s visual system;
this integration is described in § 3.1. To assess Neurokernel’s ability to exploit technology for
accelerated data transmission between multiple GPUs, we provide benchmarks of its module
communication services in § 3.2. Finally, we compare Neurokernel to other computational
projects directed at reverse engineering the function of neural circuits in § 4 and discuss the
project’s long-term goals in § 5.

2 Framework Design and Features

2.1 Modeling the Fruit Fly Brain

Analysis of the Drosophila connectome has revealed that its brain can be decomposed into
fewer than 50 distinct neural circuits, most of which correspond to anatomically distinct
regions in the fly brain [7]. These regions, or neuropils, include sensory circuits such as
the olfactory system’s antennal lobe and the visual system’s lamina and medulla, as well
as control and integration neuropils such as the protocerebral bridge and ellipsoid body
(Fig. 1). Most of these modules are referred to as local processing units (LPUs) because
they are characterized by unique populations of local neurons whose processes are restricted
to specific neuropils.

The axons of an LPU’s local neurons and the synaptic connections between them and
other neurons in the LPU constitute an internal pattern of connectivity that is distinct from
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the bundles, or tracts, of projection neuron processes that transmit data to neurons in other
LPUs (Fig. 1); this suggests that an LPU’s local neuron population and synaptic connections
largely determine its functional properties. The fly brain also comprises modules referred to
as hubs that contain no local neurons; they appear to serve as communication relays between
different LPUs.

In contrast to a purely anatomical subdivision, the decomposition of the brain into func-
tional modules casts the problem of reverse engineering the brain as one of discovering the
information processing performed by each individual LPU and determining how specific pat-
terns of axonal connectivity between these LPUs integrates them into functional subsystems.
Modeling both these functional modules and the connectivity patterns that link them inde-
pendent of the internal design of each module is a fundamental requirement of Neurokernel’s
architecture.

Figure 1: Modular structure of fly brain. Individual LPUs, hubs, and tracts are identified
by different colors; for example, the central green structures in the left-hand figure are the
antennal lobes, while the large peripheral cyan structures are the medullae. Most LPUs are
paired across the fly’s two hemispheres. Tracts depicted in the right-hand figure may connect
pairs of LPUs located in each hemisphere or within a single hemisphere ([7], reproduced with
permission).

2.2 Architecture of the Neurokernel

We refer to our software framework for fly brain emulation as a kernel because it aims to
provide two classes of functions associated with traditional computer operating systems [31]:
it must serve as a resource allocator that enables the scalable use of parallel computing
resources to accelerate the execution of an emulation, and it must serve as an extended
machine that provides software services and interfaces that can be programmed to emulate
and integrate functional modules in the fly brain.

Neurokernel’s architectural design consists of three planes that separate between the time
scales of a model’s representation and its execution on multiple parallel processors (Fig. 2).
This enables the design of vertical APIs that permit development of new features within one
plane while minimizing the need to modify code associated with the other planes. Services
that implement the computational primitives and numerical methods required to execute
supported models on parallel processors are provided by the framework’s compute plane.
Translation or mapping of a models’ specified components to the methods provided by the
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compute plane and management of the parallel hardware and data communication resources
required to efficiently execute a model is performed by Neurokernel’s control plane. Finally,
the framework’s application plane provides support for specification of neural circuit models,
connectivity patterns, and interfaces that enable independently developed models of the fly
brain’s functional subsystems to be interconnected; we describe these interfaces in greater
detail in § 2.4.

Application
Plane

Control
Plane

Compute | (cpy}--[cpu}-{GpPu - - - |
Plane

GPU

Figure 2: The three-plane structure of the Neurokernel architecture is based on the prin-
ciple of separation of time scales. The application plane provides support for hardware-
independent specification of LPUs and their interconnects. Services that implement the
neural primitives and computing methods required to execute neural circuit model instan-
tiations on GPUs are provided by the compute plane. Translation or mapping of specified
model components to the methods provided by the compute plane and management of mul-

tiple GPUs and communication resources is performed by the control plane operating on a
cluster of CPUs.

2.3 Neurokernel Programming Model
2.3.1 Interface Configuration

A key aspect of Neurokernel’s design is the separation it imposes between the internal pro-
cessing performed by an LPU model and how that model communicates with other models
(Fig. 3). Neurokernel’s programming model requires that one specify how an LPU’s inter-
face is configured and connected to those of other LPUs. The interface of an LPU must be
described exclusively in terms of communication ports that either transmit data to or receive
data from ports exposed by other LPUs. Each port must be configured either to receive input
or emit output, and must be configured to either accept spike data represented as boolean
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values or graded potential data represented as floating point values (Fig. 4). Both of these
settings are mutually exclusive; a single port may not both receive input and emit output,
nor may it accept both spike and graded potential data. Ports are uniquely specified relative
to other ports within an interface using a path-like identifier syntax to facilitate hierarchical
organization of large numbers of ports (Tab. 1).

LPU O Pattern LPU 1
Int | Int 1
e AP TRHESP ] e
Design —CH—D —CH—D— Design

Lg«p LGP
O Input Ports O Graded Potential Ports
D Output Ports O Spiking Ports

Figure 3: Neurokernel programming model. An LPU model’s internal components (cyan)
are exposed via input and output ports (yellow and orange). Connections between LPUs are
described by patterns (green) that link the ports of one LPU to those of another. Connections
may only be defined between ports of the same transmission type (circles, diamonds).

\ mall I
Spiking ) S O R N |
Ports
G
Graded G
Potential
Ports
=

Figure 4: LPU interface. Each communication port must either receive input (yellow) or emit
output (orange), and must either transmit spikes (diamonds) or graded potentials (circles).

2.3.2 Pattern Configuration

A single LPU may potentially be connected to many other LPUs; these connections must
be expressed as patterns between pairs of LPUs (Fig. 3). Each pattern must be expressed in
terms of (1) two interfaces - each comprising a set of ports - between which connections may
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Identifier /Selector Comments
/med/L1[0] selects a single port
/med/L1/0 equivalent to /med/L1[0]
/med+/L1[0] equivalent to /med/L1[0]
/med/ [L1,L2] [0] selects two ports
/med/L1[0,1] another example of two ports
/med/L1[0],/med/L1[1] | equivalent to /med/L1[0,1]
/med/L1[0:10] selects ten ports
/med/L1/* selects all ports starting with /med/L1
(/med/L1,/med/L2)+[0] | equivalent to /med/[L1,L2] [0]
/med/[L1,L2] .+[0:2] equivalent to /med/L1[0],/med/L2[1]

Table 1: Path-like port identifier and selector syntax examples.

be defined, and (2) the actual connections between individual ports in the two interfaces
(Tab. 2).

(a) Port Attributes

Port | Interface | I/O Port Type
/lam[0] 0 in | graded potential (b) Connections
pmi| 0 |in |t il | T
am out | grade .po. entia Nan[0] | /med[0]
/lam[3] 0 out spiking
L /1lam[0] | /med[1]
/lam[4] 0 out spiking
. /lam([1] | /med[2]
/lam[5] 0 out spiking
. /med [3] | /lam[3]
/med [0] 1 out | graded potential
. /med [4] | /lam[4]
/med [1] 1 out | graded potential /med[4] | /lam[5]
/med [2] 1 out | graded potential
/med [3] 1 in spiking
/med [4] 1 in spiking

Table 2: Inter-LPU connectivity pattern example. An instance of the Pattern class com-
prises the attributes associated with each port in the pattern’s two interfaces (2a) and the
connections between ports (2b).

Port attributes are used by Neurokernel to determine compatibility between LPU and
pattern objects. To provide LPU designers with the freedom to determine how to multiplex
input data from multiple sources within an LPU, Neurokernel does not permit multiple input
ports in a pattern to be connected to a single output port. Input ports in a pattern may be
connected to multiple output ports. It should be noted that the connections defined by an
inter-LPU connectivity pattern do not represent synaptic models; any synapses comprised
by a brain model must be a part of the design of a constituent LPU and connected to the
LPU’s ports in order to either receive or transmit data from or to modeling components in
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other LPUs.

2.4 Application Programming Interface

In contrast to other currently available GPU-based neural emulation packages [45, 44, 47, 54],
Neurokernel is implemented entirely in Python, a high-level language with a rich ecosystem of
scientific packages that has enjoyed increasing popularity in neuroscience research. Although
GPUs can be directly programmed using frameworks such as NVIDIA CUDA and OpenCL,
the difficulty of writing and optimizing code using these frameworks exclusively has led to
the development of packages that enable run-time code generation (RTCG) using higher
level languages [4]. Neurokernel uses the PyCUDA package to provide RTCG support for
NVIDIA’s GPU hardware without forgoing the development advantages afforded by Python
[30].

To make use of Neurokernel’s LPU API, all LPU models must subclass a base Python
class called Module that provides LPU designers with the freedom to organize the internal
structure of their model implementations as they see fit independent of the LPU interface
configuration. Implementation of a Neurokernel-compatible LPU requires that (1) the LPU
be uniquely identified relative to all other LPUs to which it may be connected in a subsystem
or whole-brain emulation, (2) the execution of all operations comprised by a single step of
the LPU’s emulation be performed by invocation of a single method called run_step(), and
that (3) the LPU’s interface be configured as described in § 2.3.1.

An instantiated LPU’s graded potential and spiking ports are respectively associated
with GPU data arrays that Neurokernel accesses to transmit data between LPUs during
emulation execution; LPU designers are responsible for reading the data elements associated
with input ports and populating the elements associated with output ports in the run_step()
method. Modeling components that do not communicate with other LPUs and the internal
connectivity patterns defined between them are not made accessible through the LPU’s
interface (Fig. 3).

Inter-LPU connectivity patterns correspond to the connections described by the tracts
depicted in Fig. 1. These are represented by a tensor-like class called Pattern that con-
tains the port and connection data described in § 2.3.2. To conserve memory, only existing
connections are stored in a Pattern instance. In addition to manually constructing inter-
LPU connectivity patterns using the configuration methods provided by the Pattern class,
Neurokernel also supports loading connectivity patterns from CSV, GEXF, or XML files
using a schema similar to NeuroML [19] with components that enable the specification of
LPUs, connectivity patterns, and the ports they expose. Inter-LPU connections currently
remain static throughout an emulation; future versions of Neurokernel will support dynamic
instantiation and removal of connections while a model is being executed.

The designer of an LPU is responsible for associating ports with internal components
that either consume input data or emit output data. Neurokernel provides a class called
GPUPortMapper that maps port identifiers to GPU data arrays; by default, each Module
instance contains two GPUPortMapper instances that respectively associate the LPU’s ports
with arrays containing graded potential and spike values. After each invocation of the LPU’s
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run_step() method, data within these arrays associated with the LPU’s output ports is
automatically transmitted to the port data arrays of destination LPUs, while input data
from source LPUs is automatically inserted into those elements associated with the LPU’s

input ports (Fig. 3).

(a) Mapping of graded potential ports.

(b) Mapping of spiking ports.

Port Array Index | Array Data Port Array Index | Array Data
/lam[0] 0 0.71 /lam[3] 0 1
/lam[1] 1 0.83 /lam[4] 1 0
/lam[2] 2 0.52 /lam[5] 2 1

Table 3: Example of input and output data mapped to and from data arrays by the
GPUPortMapper class for the ports comprised by interface 0 in Tab. 2.

In addition to the classes that represent LPUs and inter-LPU connectivity patterns,
Neurokernel provides an emulation manager class called Manager that provides services for
configuring LPU classes, connecting them with specified connectivity patterns, and deter-
mining how to route data between LPUs based upon those patterns. The manager class
hides the process and communication management performed by OpenMPI so as to obviate
the need for model designers to directly interact with the traditional MPI job launching
interface. Once an emulation has been fully configured via the manager class, it may be
executed for a specified interval of time or for a specified number of steps.

Apart from the API requirements discussed above, Neurokernel currently places no ex-
plicit restrictions upon an LPU model’s internal implementation, how it interacts with avail-
able GPUs, how LPUs record their output, or the topology of interconnections between
different LPUs; compatible LPUs and inter-LPU patterns may be arbitrarily composed to
construct subsystems (Fig. 5). It should be noted that the current LPU interface is not
intended to be final; we anticipate its gradual extension to support communication between
models that more accurately account for the range of interactions that occur within the fly’s
brain.

Neurokernel’s compute plane currently provides GPU-based implementations for several
common neuron and synapse models. These modeling components may be used to construct
and execute LPUs without writing any Python code by specifying an LPU’s design declara-
tively as a graph stored in GEXF format. Additional modeling components may be added
to the compute plane as plugins.

Communication between LPU instances in a running Neurokernel emulation is performed
using MPI to enable brain emulations to take advantage of multiple GPUs hosted either on
single computer or a computer cluster. Neurokernel uses OpenMPI [17] to provide acceler-
ated access between GPUs that support NVIDIA’s GPUDirect technology [48, 49] when the
source and destination memory locations of an MPI data transfer are both in GPU memory.
Neurokernel-based models are executed in a bulk synchronous fashion; each LPU’s execution
step is executed asynchronously relative to other LPUs’ execution steps, but data associated
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Left Right
Hemisphere Hemisphere
Figure 5: Neurokernel brain modeling architectural hierarchy. Independently developed
LPUs and connectivity patterns may be composed into subsystems (red, green) which may
in turn be connected to other subsystems to construct a model of the whole brain (yellow).

with the output ports of all connected LPUs must be propagated to their respective desti-
nations before those LPUs can proceed to the next execution step.

2.5 Using the Neurokernel API

This section illustrates how to use the Neurokernel classes described in § 2.4 to construct
and execute an emulation consisting of multiple connected LPUs. The section assumes that
Neurokernel and its relevant dependencies (including OpenMPI) have already been installed
on a system containing multiple GPUs. First, we import several required Python modules;
the mpi_relaunch module provided by Neurokernel sets up the MPI environment required
to enable communication between LPUs.

import neurokernel .mpi_relaunch

from mpid4py import MPI
import numpy as np
import pycuda.gpuarray as gpuarray

from neurokermnel .mpi import setup_logger

from neurokermnel.core_gpu import Module, Manager

from neurokermnel.pattern import Pattern

from neurokernel.plsel import Selector, SelectorMethods

Next, we create a subclass of Module whose run step() method accesses the class in-
stance’s port data arrays; the example below generates random graded potential and spiking
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output port data.
class MyModule (Module):

naumnn

Ezample of dertved module class.

nann

def run_step(self):
super (MyModule, self).run_step ()

# Log input graded potential data:
self.log_info (’input gpot port data: °’+\
str(self .pm[’gpot’][self.in_gpot_ports]))

# Log input spike data:
self.log_info (’input spike port data: ’+\
str(self.pm[’spike’][self.in_spike_ports]))

# Output random graded potential data:

out_gpot_data = \
gpuarray.to_gpu(np.random.rand(len(self.out_gpot_ports)))

self .pm[’gpot’][self.out_gpot_ports] = out_gpot_data

self.log_info (’output gpot port data: ’+str(out_gpot_data))

# Output spikes to randomly selected output ports:
out_spike_data = \
gpuarray.to_gpu(np.random.randint (0, 2,
len(self.out_spike_ports)))
self .pm[’spike’] [self.out_spike_ports] = out_spike_data
self.log_info(’output spike port data: ’+str(out_spike_data))

The data arrays associated with an LPU’s ports may be accessed using their path-like
identifiers via two instances of the GPUPortMapper class stored in the self.pm attribute.
Updated data associated with output ports is propagated to the relevant destination LPUs
by Neurokernel before the next iteration of the emulation’s execution.

To connect two LPUs, we specify the ports to be exposed by each LPU using path-
like selectors. The example below describes the interfaces for two LPUs that each expose
two graded potential input ports, two graded potential output ports, two spiking input
ports, and two spiking output ports. Selector is a convenience class that provides methods
and overloaded operators for combining and manipulating sets of validated port identifiers.
Additional methods for manipulating port identifiers are provided by the SelectorMethods
class.
ml_sel_in_gpot = Selector(’/a/in/gpot[0:2] )
ml_sel_out_gpot = Selector(’/a/out/gpot[0:2]7)

ml_sel_in_spike = Selector(’/a/in/spike[0:2] )
ml_sel_out_spike = Selector(’/a/out/spike[0:2]7)

m2_sel_in_gpot = Selector(’/b/in/gpot[0:2] )
m2_sel_out_gpot = Selector(’/b/out/gpot[0:2] )
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m2_sel_in_spike = Selector(’/b/in/spike[0:2] )
m2_sel_out_spike = Selector(’/b/out/spike[0:2] )

ml_sel = ml_sel_in_gpot+ml_sel_out_gpot+\
ml_sel_in_spike+ml_sel_out_spike

ml_sel_in = ml_sel_in_gpot+ml_sel_in_spike
ml_sel_out = ml_sel_out_gpot+ml_sel_out_spike
ml_sel_gpot = ml_sel_in_gpot+ml_sel_out_gpot
ml_sel_spike = ml_sel_in_spike+ml_sel_out_spike

m2_sel = m2_sel_in_gpot+m2_sel_out_gpot+\
m2_sel_in_spike+m2_sel_out_spike

m2_sel_in = m2_sel_in_gpot+m2_sel_in_spike
m2_sel_out = m2_sel_out_gpot+m2_sel_out_spike
m2_sel_gpot = m2_sel_in_gpot+m2_sel_out_gpot
m2_sel_spike = m2_sel_in_spike+m2_sel_out_spike

N1_gpot = SelectorMethods.count_ports(ml_sel_gpot)
N1_spike = SelectorMethods.count_ports(ml_sel_spike)

N2_gpot = SelectorMethods.count_ports(m2_sel_gpot)
N2_spike = SelectorMethods.count_ports(m2_sel_spike)

Using the above LPU interface data, we construct an inter-LPU connectivity pattern by
instantiating the Pattern class, setting its port transmission types, and populating it with
connections:

patl2 = Pattern(ml_sel, m2_sel)

patl2.interface[ml_sel_out_gpot] = [0, ’in’, ’gpot’]
patl2.interface[ml_sel_in_gpot] = [0, ’out’, ’gpot’]
patl2.interface[ml_sel_out_spike] = [0, ’in’, ’spike’]
patl2.interface[ml_sel_in_spike] = [0, ’out’, ’spike’]
patl2.interface[m2_sel_in_gpot] = [1, ’out’, ’gpot’]
patl2.interface[m2_sel_out_gpot] = [1, ’in’, ’gpot’]
patl2.interface[m2_sel_in_spike] = [1, ’out’, ’spike’]
patl2.interface[m2_sel_out_spike] = [1, ’in’, ’spike’]
patl12[’/a/out/gpot [0]’, ’/b/in/gpot[0]°] = 1
pati2[’/a/out/gpot[1]°’, ’/b/in/gpot[1]°’] = 1
pat12[’/b/out/gpot [0]’, ’/a/in/gpot[0]1°’] = 1
patl12[’/b/out/gpot[1]°’, ’/a/in/gpot[1]’] = 1
patl2[’/a/out/spike[0]’, ’/b/in/spike[0]°’] = 1
pati12[’/a/out/spike[1]’, ’/b/in/spike[1]°’] =1
pat12[’/b/out/spike[0]’, ’/a/in/spike[0]°’] = 1
patl12[’/b/out/spike[1]°’, ’/a/in/spike[1]’] 1

We can then pass the defined LPU class and the parameters to be used during instan-
tiation to a Manager class instance that connects them together with the above pattern.
The setup_logger function may be used to enable output of log messages generated during
execution:

logger = setup_logger (screen=True, file_name=’neurokernel.log’,
mpi_comm=MPI.COMM_WORLD, multiline=True)
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man = Manager ()

ml_id = ’mil ’
man .add (MyModule, ml1_id, ml_sel, ml_sel_in, ml_sel_out,
ml_sel_gpot, ml_sel_spike,
np.zeros (N1_gpot, dtype=np.double),
np.zeros (N1_spike, dtype=int),
device=0)
m2_id = ’m2 ’
man . add (MyModule, m2_id, m2_sel, m2_sel_in, m2_sel_out,
m2_sel_gpot, m2_sel_spike,
np.zeros (N2_gpot, dtype=np.double),
np.zeros (N2_spike, dtype=int),
device=1)
man.connect (ml_id, m2_id, patl2, 0, 1)

After all LPUs and connectivity patterns are provided to the manager, the emulation
may be executed for a specified number of steps as follows. Neurokernel uses the dynamic
process creation feature of MPI-2 supported by OpenMPI to automatically spawn as many
MPI processes are needed to run the emulation:
duration = 10.0
dt = 1le-2
man . spawn ()

man.start (int (duration/dt))
man.wait ()

3 Results

To evaluate Neurokernel’s ability to facilitate interfacing of functional brain modules that
can be executed on GPUs, we employed Neurokernel’s programming model (§ 2.3) to inter-
connect independently developed LPUs in the fly’s early visual system to provide insights
into the representation and processing of the visual field by the cascaded LPUs. We also
evaluated Neurokernel’s scaling of communication performance in simple configurations of
the architecture parameterized by numbers of ports and LPUs.

The scope of the effort to reverse engineer the fly brain and the need to support the
revision of brain models in light of new data requires a structured means of advancing and
documenting the evolution of those models and the framework required to support them.
To this end, the Neurokernel project employs Requests for Comments documents (RFCs)
as a tool for advancing the designs of both Neurokernel’s architecture and the LPU models
built to use it. RFCs containing detailed descriptions of the models of the visual system
LPUs described below are publicly available on the project website http://neurokernel.
github.io/docs.html.
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3.1 Integration of Independently Developed LPU Models

The integrated early visual system model we considered consists of models of the fly’s retina
and lamina. The retina model comprises a hexagonal array of 721 ommatidia, each of which
contains 6 photoreceptor neurons. The photoreceptor model employs a stochastic model
of how light input (photons) produce a membrane potential output. Each photoreceptor
consists of 30,000 microvilli modeled by 15 equations per microvillus, a photon absorption
model, and a model of how the aggregate microvilli contributions produce the photorecep-
tor’s membrane potential [32]; the entire retina model employs a total of about 1.95 billion
equations. The lamina model consists of 4,326 Morris-Lecar neurons configured to not emit
action potentials and about 50,000 conductance-based synapses [37]. The LPUs were linked
by 4,326 feed-forward connections from the retina to the lamina; the connections from the
retina to the lamina were configured to map output ports exposed by the retina to input
ports in the lamina based upon the neural superposition rule [29].

The combined retina and lamina models were executed on up to 4 Tesla K20Xm NVIDIA
GPUs with a natural video scene provided as input to the retinal model’s photoreceptors.
The computed membrane potentials of specific photoreceptors in each retinal ommatidium
and of select neurons in each cartridge of the lamina were recorded (Fig. 6); videos of the com-
puted potentials are included in the supporting information. In this example, the observed
R1 photoreceptor outputs demonstrate the preservation of visual information received from
the retina by the lamina LPU. The L1 and L2 lamina neuron outputs demonstrate the signal
inversion taking place in the two pathways shaping the motion detection circuitry of the fly.
These initial results illustrate how Neurokernel’s API enables LPU model designers to treat
their models as neurocomputing modules that may be combined into complex information
processing pipelines whose input/output properties may be obtained and evaluated.
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Figure 6: Example of natural input to the combined retina/lamina model. The hexago-
nal tiling depicts the array of ommatidia in the retina and the corresponding retinotopic
cartridges in the lamina. Outputs of select photoreceptors in the retina (R1) that are fed
to neurons in the lamina and outputs of specific neurons in the lamina (L1, L2) are also
depicted.

3.2 Module Communication Performance

We compared the performance of emulations in which port data stored in GPU memory is
copied to and from host memory for traditional network-based transmission by OpenMPI to
that of emulations in which port data stored in GPU memory is directly passed to OpenMPI’s
communication functions. The latter functions enabled direct GPU-to-GPU transmission to
take place on supported GPU hardware [49]. All tests discussed below were performed on
a host containing 2 Intel Xeon 6-core E5-2620 CPUs, 32 Gb of RAM, and 4 NVIDIA Tesla
K20Xm GPUs running Ubuntu Linux 14.04, NVIDIA CUDA 7.0, and OpenMPI 1.8.5 built
with CUDA support.
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3.2.1 Scaling over Number of LPU Output Ports

To evaluate how well inter-LPU communication scales over the number of ports exposed by
an LPU on a multi-GPU machine, we constructed and ran emulations comprising multiple
connected instances of an LPU class with an empty run_step() method and measured
(1) the average time taken per execution step to synchronize the data exposed by the output
ports in each of two connected LPUs with their respective destination input ports; (2) the
average throughput per execution step (in terms of number of port data elements transmitted
per second) of the synchronization, where each port is stored either as a 32-bit integer or
double-precision floating point number (both of which occupy 8 bytes).

We initially examined how the above performance metrics scaled over the number of
output ports exposed by each LPU in a 2-LPU emulation and over the number of LPUs in
an emulation where each LPU is connected to every other LPU and the total number of
output ports exposed by each LPU is fixed. The metrics for each set of parameters were
averaged over 3 trials; the emulation was executed for 500 steps during each trial.
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Figure 7: Synchronization performance for an emulation comprising 2 interconnected LPUs
accessing 2 different GPUs on the same host scaled over number of output ports exposed by
each LPU. The number of output ports was varied over 25 equally spaced values between 50
and 15,000. The plot on the left depicts average synchronization time per execution step,
while the plot on the right depicts average synchronization throughput (in number of ports
per unit time) per execution step.

The scaling of performance over number of ports depicted in Fig. 7 clearly illustrate
the ability of GPU-to-GPU communication between locally hosted GPUs to ensure that
increasing the number of ports exposed by an LPU does not increase model execution time
for numbers of ports similar to the numbers of neurons in actual LPUs. We also observed
noticeable speedups in synchronization time for scenarios using more than 2 GPUs as the
number of ports exposed by each LPU is increased (Fig. 8). As the number of GPUs in use
reached the maximum available in our test system, overall speedup diminished; this appears
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Figure 8: Speedup of average synchronization time per execution step for an emulation scaled
over number of LPUs, where each LPU is mapped to a single GPU. The total number of
output ports exposed by each LPU was varied between 250 and 10,000 at 250 port intervals.

to be due to gradual saturation of the host’s PCI bus.

3.2.2 Scaling over Number of LPUs

Current research on the fly brain is mainly focused on LPUs in the fly’s central complex
and olfactory and vision systems. Since the interplay between these systems will be key
to increasing understanding of multisensory integration and how sensory data might inform
behavior mediated by the central complex, we examined how well Neurokernel’s communica-
tion mechanism performs in scenarios where LPUs from these three systems are successively
added to a multi-LPU emulation. Starting with the pair of LPUs with the largest number
of inter-LPU connections, we sorted the 19 LPUs in the above three systems in decreasing
order of the number of connections contributed with the addition of each successive LPU
and measured the average speedup in synchronization time per execution step due to direct
GPU-to-GPU data. The number of connections for each LPU was based upon estimates from
a mesoscopic reconstruction of the fruit fly connectome; these numbers appear in Document
S2 of the supplement of [58]. The LPU class instances were designed to send and receive data
only; no other computation was performed or benchmarked during execution. To amortize
inter-LPU transmission costs, the LPUs were partitioned across the available GPUs using
the METIS graph partitioning package [26] to minimize the total edge cut. The speedup
afforded by direct GPU-to-GPU data (Fig. 9) illustrates that current GPU technology can
readily power multi-LPU models based upon currently available connectome data.
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Figure 9: Synchronization performance for an emulation comprising between 4 and 19 inter-
connected LPUs selected from the central complex, olfactory, and vision systems partitioned
over 2 to 4 GPUs on the same host.

4 Discussion

In light of their low costs and rapidly increasing power and availability, there is growing inter-
est in leveraging the power of multiple GPUs to support neural simulations with increasingly
high computational demands [65, 46, 41]. When combined with concomitant increases in fly
connectomic knowledge and improvements in electrophysiological techniques, the ongoing ad-
vance of GPU technology affords an unprecedented opportunity to emulate an entire brain
or nervous system of a computationally tractable organism. The OpenWorm project [63],
for instance, is capitalizing on the extremely small number of neurons in the nervous system
of the nematode Caenorhabditis elegans and the full reconstruction of its connectome [68]
to develop an emulation of the entire worm on a computer. A recently started effort is the
development of a neuromechanical model called Sibernetic [50] that uses GPUs to power
simulation of its body and environment. In a similar vein, Neurokernel stands to enable
fly researchers to leverage improving GPU technology to take advantage of the increasing
amounts of connectome data produced by ongoing advances in our understanding of the fly
brain’s connectivity [9, 7, 64] for designing and testing fly brain models.

Currently available neural simulation software affords researchers with a range of ways of
constructing neural circuit models. These include tools that enable models to be explicitly
expressed as systems of differential equations [22], structured documents [19], or explicit
calls to a high-level programming API [6, 10, 14]. They also include tools for defining and
manipuling neural connectivity patterns [21, 2, 11]. A platform for developing emulations of
the entire fly brain, however, must provide programming services for expressing the functional
architecture of the whole brain (or its subsystems) in terms of subunits with high-level
information processing properties that clearly separate between the internal design of each
subunit and how they communicate with each other. Neurokernel’s architecture specifically
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targets these gaps by providing both the high-level APIs needed to explicitly define and
manipulate the architectural elements of brain models as well as the low-level computational
substrate required to efficiently execute those models’ implementations on multiple GPUs
(see Fig. 2).

Existing technologies for interfacing neural models currently provide no native support
for the use of GPUs and none of the aforementioned services required to scale over multiple
GPU resources. Neurokernel aims to address the problem of model incompatibility in the
context of fly brain modeling by ensuring that GPU-based LPU model implementations and
inter-LPU connectivity patterns that comply with its APIs are interoperable regardless of
their internal implementations.

Despite the impressive performance GPU-based spiking neural network software can cur-
rently achieve for simulations comprising increasingly large numbers of neurons and synapses,
enabling increasingly detailed fly brain models to efficiently scale over multiple GPUs will
require resource allocation and management features that are not yet provided by currently
available neural simulation packages. By explicitly providing services and APIs for man-
agement of GPU resources, Neurokernel will enable fly brain emulations to benefit from the
near-term advantages of scaling over multiple GPUs while leaving the door open to antici-
pated improvements in GPU technology that can further accelerate the performance of fly
brain models.

The challenges of reverse engineering neural systems have spurred a growing number
of projects specifically designed to encourage collaborative neuroscience research endeavors.
These include technologies for model sharing [23, 19, 20], curation of publicly available elec-
trophysiological data [59], and the construction of comprehensive nervous system models for
specific organisms [63]. For collaborative efforts at fly brain modeling to succeed, however,
there is a need to both ensure the interoperability of independently developed LPU models
without modification of their internal implementations while enforcing a model of the over-
all brain connectivity architecture. Software packages that enable multiple independently
developed neural simulators to execute complex models either by means of communication
APIs that simulators must support [12] or through encapsulation of calls to one simulator by
a second simulator [51] must be complemented with the flexibility to define and manipulate
the emulated connectivity architecture. By imposing mandatory communication interfaces
upon models, Neurokernel explicitly ensures that LPU models may be combined with other
compatible models to construct subsystem or whole brain emulations.

Neuromorphic platforms whose design is directly inspired by the brain have the poten-
tial to execute large-scale neural circuit models at speeds that significantly exceed those
achievable with traditional von Neumann computer architectures [60, 62, 53, 52]. Increasing
support for high-level software interfaces such as PyNN [10] by such platforms raises the
possibility of executing highly detailed LPU models on neuromorphic hardware. As neuro-
morphic technology matures and becomes available to the wider neurocomputing community;,
we anticipate Neurokernel’s compute plane eventually supporting the use of such hardware
alongside and eventually in the place of GPU technology to power whole brain emulations.
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5 Future Development

Efforts at reverse engineering the brain must ultimately confront the need to validate hy-
potheses regarding neural information processing against actual biological systems. In order
to achieve biological validation of the Neurokernel, the computational modeling of the fly
brain must be tightly integrated with increasingly precise electrophysiological techniques and
the recorded data evaluated with novel system identification methods [27, 28, 34, 33, 38, 35,
36]. This will enable direct comparison of the output of models executed by Neurokernel
to that of corresponding neurons in the brain regions of interest. Given that recently de-
signed GPU-based systems for emulating neuronal networks of single spiking neuron types
have demonstrated near real-time execution performance for networks of up to ~ 10° spik-
ing neurons and ~ 107 synapses using single GPUs [45, 15, 54], and in light of advances
in the power and accessibility of neuromorphic technology [60, 10, 62, 53, 52|, we antici-
pate that future advances in parallel computing technology will enable Neurokernel’s model
execution efficiency to advance significantly towards the time scale of the actual fly brain.
These advances will enable researchers to validate models of circuits in the live fly’s brain
within similar time scales and use the observed discrepancies to inform subsequent model
improvements (Fig. 10).

Live Fly Brain Fly Brain Model

Stimulus
Signal

Connectome
Discoveries
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Model
Updates

A

Response | Model
Comparison | Response

Figure 10: In vivo validation is essential to the development of accurate fly brain models.
Neural responses to sensory stimuli are recorded from the live fly brain in real time and
compared to the computed responses of the corresponding components in a fly brain model
executed on the same time scale. Discrepancies between these responses and new connectome
data may be used to improve the model’s accuracy (fly photograph adapted from Berger and
fly robot image adapted from Vizcano, Benton, Gerber, and Louis, both reproduced with
permission).

Although Neurokernel currently permits brain models to make use of multiple GPUs, it
requires programmers to explicitly manage the GPU resources used by a model’s implemen-
tation. Having implemented the API for building and interconnecting LPUs described in
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§ 2.4 within Neurokernel’s application plane, our next major goal is to implement a proto-
type GPU resource allocation mechanism within the control plane to automate selection and
management of available GPUs used to execute a fly brain model. Direct access to GPUs
will also be restricted to modeling components implemented by LPU developers and added
to Neurokernel’s compute plane; models implemented or defined in the application plane will
instantiate and invoke these components. These developments will permit experimentation
with different resource allocation policies as LPU models become more complex. Restricting
parallel hardware access to modeling components exposed by the compute plane will also
facilitate development of future support for other parallel computing technologies such as
non-NVIDIA GPUs or neuromorphic hardware.

Neurokernel is a fundamental component of the collaborative workflow needed to accel-
erate the process of fly brain model development, execution, and refinement by multiple
researchers. This workflow, however, also requires a means of efficiently constructing brain
models and modifying their structure and parameters in light of output discrepancies ob-
served during validation or to incorporate new experimental data. As noted in § 2.4, Neu-
rokernel currently can execute LPU models declaratively specified as GEXF files that each
describe an individual LPU’s design as a graph of currently supported neuron and synapse
model instances and separately specified inter-LPU connectivity patterns. Since this model
representation must either be manually constructed or generated by ad hoc processing of
connectome data, modification of LPUs is currently time consuming and significantly slows
down the improvement of brain models. LPUs explicitly implemented in Python that do not
use supported neuron or synapse models are even less easy to update because of the need to
explicitly modify their implementations.

To address these limitations and enable rapid updating and reevaluation of fly brain
models, we are building a system based upon graph databases called Neuroarch for the
specification and sophisticated manipulation of structural data associated with LPU models
and inter-LPU connectivity [18]. Neuroarch will (1) provide LPU developers with a means
of defining model components and canonical circuit abstractions using biologically-oriented
model-specific labels, (2) enable powerful queries against the data associated with multiple
interconnected LPU models via an object-oriented interface similar to that provided by
object-relational mapping (ORM) software to web application developers, (3) provide access
to model data at different levels of structural abstraction higher than neurons and synapses,
(4) enable access to and/or modification of stored data in multiple modes, i.e., as a subgraph
(to facilitate graph-based queries) or a table (to facilitate tabular or relational queries), and
(5) provide an interface to Neurokernel that enables immediate execution of models defined
in Neuroarch.

6 Conclusion

Despite the fly brain’s relative numerical tractability, its successful emulation is an ambitious
goal that will require the joint efforts of multiple researchers from different disciplines. Neuro-
kernel’s open design, support for widely available commodity parallel computing technology,
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and ability to integrate independently developed models of the brain’s functional subsystems
all facilitate this joining of forces. The framework’s first release is a step in this direction;
we expect and anticipate that aspects of the current design such as connectivity structure
and module interfaces will be superseded by newer designs informed by the growing body of
knowledge regarding the structure and function of the fly brain. We invite the research com-
munity to join this effort on Neurokernel’s website (https://neurokernel.github.io/), on-
line code repository (https://github.com/neurokernel/neurokernel), and development
mailing list (https://lists.columbia.edu/mailman/listinfo/neurokernel-dev).

7 Acknowledgements

The authors would like to thank Konstantinos Psychas, Nikul H. Ukani, and Yiyin Zhou
for developing and integrating the visual system LPU models used to test the software.
The authors would also like to thank Juergen Berger for kindly permitting reuse of his
fly photograph and thank Nacho Vizcano, Richard Benton, Bertram Gerber, and Matthieu
Louis for permitting reuse of the robot fly image they composed for the ESF-EMBO 2010
Conference on Functional Neurobiology in Minibrains.

This work was supported in part by AFOSR under grant #FA9550-12-10232, in part by
NSF under grant #1544383, and in part by a Professional Scholarship of the Engineering
Graduate Student Council at Columbia University.

8 Supporting Information

S1 Video

Natural video signal input and photoreceptor/neuron outputs of integrated reti-
na/lamina LPU models.

This video depicts a natural video signal input to the photoreceptors in the 721 omma-
tidia comprised by the retina model, average photoreceptor response per ommatidium, and
outputs (membrane potentials) of select photoreceptors (R1) in retina and neurons (L1, 1.2)
in the lamina.
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