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Abstract

The brain of the fruit fly Drosophila melanogaster is an extremely attractive model
system for reverse engineering the emergent properties of neural circuits because it im-
plements complex sensory-driven behaviors with a nervous system comprising a num-
ber of components that is five orders of magnitude smaller than those of mammals. A
powerful toolkit of well-developed genetic techniques and advanced electrophysiological
recording tools enables the fly’s behavior to be experimentally linked to the function
of its neural circuitry. To enable neuroscientists to use these strengths of fly brain
research to surmount the structural complexity of its brain and create an accurate
model of the entire fly brain, we have developed an open Python framework called
Neurokernel designed to enable collaborative development of comprehensive fly brain
models and their execution and testing on multiple Graphics Processing Units (GPUs).
Neurokernel’s model support architecture is motivated by the organization of the fly
brain into fewer than 50 functional modules called local processing units (LPUs) that
are each characterized by a unique population of local neurons. By defining communi-
cation interfaces that specify how spikes and neuron membrane states are transmitted
between LPUs, Neurokernel enables researchers to collaboratively develop and refine
whole-brain emulations by integration of independently developed processing units.
Neurokernel will also empower researchers to leverage additional GPU resources and
future improvements in GPU technology to accelerate model execution to the same
time scale as a live fly brain; this will enable in vivo validation of Neurokernel-based
models against real-time recordings of live fly brain activity. We demonstrate Neuro-
kernel’s module interfacing feature by using it to integrate independently developed
models of olfactory and vision LPUs based upon experimentally obtained connectivity
information.
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1 Introduction

There exist a range of ongoing projects to develop cortical-scale computational models of the
mammalian brain (i.e., containing ∼ 109 neurons) at high levels of biophysical faithfulness
[47, 26, 2]. These efforts have shed light on many important computational considerations
that must be confronted in order to efficiently emulate the brain’s massively parallel and fun-
damentally asynchronous architecture. The structural complexity and high computational
demands of modeling the enormous number of neurons and synapses in the mammalian
brain, however, severely complicates the reverse engineering of this architecture; simulations
of very short intervals of activity in cortical-scale neuronal networks [26, 15] currently re-
quire hours - if not days - of processing time. Execution of these models also requires the
use of supercomputers that are only accessible to a limited number of researchers. Suc-
cessful development of human brain models should therefore be preceded by an increased
understanding of the magnitude of the structural/architectural complexity of more tractable
brains of simpler organisms and how they implement specific information processing func-
tions and govern behavior [28]. In order to facilitate their improvement and extension by
other neuroscience researchers, brain model implementations must also be executable on
widely available parallel hardware platforms.

The nervous system of the fruit fly Drosophila melanogaster possesses a range of features
that recommend it as a model organism for relating brain structure to function. Despite the
obvious differences in size and complexity between the mammalian and fly brains, researchers
dating back to Cajal have observed common design principles in the structure of their sensory
subsystems [68]. Many of the genes and proteins expressed in the mammalian brain are also
conserved in the genome of Drosophila [4]. These features strongly suggest that valuable
insight into the workings of the mammalian brain can be obtained by focusing on that of
Drosophila.

Remarkably, the fruit fly is capable of a host of complex nonreactive behaviors that are
governed by a brain containing only 135,000 neurons [1]. The relationship between the fly’s
brain and its behaviors can be experimentally probed using a powerful toolkit of genetic
techniques for manipulation of the fly’s neural circuitry such as the GAL4 driver system
[14, 66, 71, 76, 46], recent advances in experimental methods for precise recordings of the
fly’s neuronal responses to stimuli [31, 32, 34, 33, 35, 80], techniques for analyzing the fly’s
behavioral responses to stimuli [7, 30, 45, 11], and progress in reconstruction of the fly
connectome, or neural connectivity map [12, 73]. These techniques have provided access to
an immense amount of valuable structural and behavioral data that can be used to model how
the fly brain’s neural circuitry implements processing of sensory stimuli [18, 49, 10, 25, 51, 69].

Understanding how the brain’s functionality is implemented by neural circuits requires a
means of exploring the emergent properties of its constituent circuits [1]. Although existing
cortical-scale models of mammalian brains do explicitly attempt to account for varying levels
of structural complexity in the brain, these models provide virtually no architecture for
the computational exploration of the brain’s functional complexity. The need for such an
architecture is evident from the requirements of engineering complex artificial systems that
simultaneously implement multiple information processing or control operations by means
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of interrelated functional modules; reverse-engineering the brain not only entails simulating
its constituent neurons and synapses, but requires a means of ascribing function to specific
parts of the brain and investigating how the interaction of those parts gives rise to complex
information processing and behavior. In addition to its comparatively tractable number of
neural components, the fruit fly brain possesses a modular structure that lends itself to the
design of such an architecture.

Effectively capitalizing upon the opportunities afforded by the fly brain’s modular struc-
ture and the techniques available to experimentally manipulate it requires the combined
expertise of multiple researchers in the neuroscience community. Efforts to develop a work-
ing computational model of the fly brain therefore require a software platform that explicitly
enables a collaborative approach to fly brain modeling using the most powerful computing
hardware that is accessible to a wide range of researchers. Graphics Processing Units (GPUs)
currently best fulfill the latter criterion; we will discuss this design choice in § 2.1.

Building a detailed model of the brain of even a relatively simple organism such as the
fruit fly requires the use of multiple GPU resources to address the number of components it
contains. The complexity of achieving scaling and - ultimately - real-time operation over such
resources while providing the programmability required to model the constituent functional
modules in the fly brain necessitates a software architecture akin to an operating system
kernel; just as an operating system must be able to allocate computational resources and
serve as an extended machine that provides the services needed by software applications,
so too must a software platform for modeling the entire brain of an organism be able to
allocate computational resources (i.e., available GPUs) and provide the programmability
(i.e., software interfaces and computing models) required by researchers to access and connect
a model’s constituent elements.

To address the above requirements of modeling the entire fly brain, we have designed an
open software framework called Neurokernel for implementing fly brain models based upon
actual connectome data and executing them upon multiple GPUs. This article details the
features of the first version of Neurokernel; we discuss the framework’s general architecture
in § 2.1 and the main biological entities in the fruit fly brain are reviewed in § 2.2. In
contrast to general-purpose neural simulators, Neurokernel’s design specifically targets the
fruit fly brain’s local processing structure and the synaptic connectivity patterns that link
them; we discuss these structures and their design implications in § 2.3. In § 2.4, we describe
Neurokernel’s current module API. We tested Neurokernel’s support for collaborative design
and model integration by connecting Neurokernel-based models of the fly’s olfactory and
vision systems independently developed by two teams with a third module that performs
multisensory coincidence detection; this integration is discussed in section § 3.
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2 Framework Design and Features

2.1 Overall Architecture

We refer to our software framework for fly brain emulation as a kernel because it provides two
main functions associated with traditional computer operating systems [38]: it serves as a
resource allocator that enables the scalable use of parallel computing resources to accelerate
the execution of an emulation, and it serves as an extended machine that provides software
services and interfaces that can be programmed to emulate and integrate functional modules
in the fly brain.

Neurokernel’s architectural design consists of three planes that separate between the time
scales of a model’s representation and its execution on multiple parallel processors (Fig. 1).
This enables the design of vertical APIs that permit development of new features within one
plane while minimizing the need to modify code associated with the other planes. Services
that implement the computational primitives and numerical methods required to execute
supported models on parallel processors are provided by the framework’s compute plane.
Translation or mapping of a models’ specified components to the methods provided by the
compute plane and management of the parallel hardware and data communication resources
required to efficiently execute a model is performed by Neurokernel’s control plane. Finally,
the framework’s application plane provides support for specification of neural circuit models,
connectivity patterns, and interfaces that enable independently developed models of the fly
brain’s functional subsystems to be interconnected. We discuss these interfaces in § 2.3. In
the remaining paragraphs of this section, we present our rationale for choosing a GPU-based
hardware platform as the substrate for the realization of Neurokernel’s compute plane.

GPU technology affords researchers an increasingly powerful yet highly cost-effective
parallel computing medium. Recently designed GPU-based systems for emulating neuronal
networks of single spiking neuron types have demonstrated near real-time execution perfor-
mance for networks of up to ∼ 105 spiking neurons and ∼ 107 synapses using single GPUs
[53, 16, 65]; the increasing availability of commodity GPU hardware enables a wide range
of researchers to take advantage of such neural modeling systems. There is also growing
interest in combining the power of multiple GPUs to address more ambitious computational
neuroscience experiments [74, 54]; these applications stand to benefit from developments in
GPU technology that accelerate communication between GPUs [56, 57].

In contrast to other currently available GPU-based neural emulation packages [53, 52,
55, 65], Neurokernel is implemented entirely in Python, a high-level language with a rich
ecosystem of scientific packages [27, 58, 61] that has enjoyed increasing popularity in neu-
roscience research. Although GPUs can be directly programmed using frameworks such as
CUDA1 and OpenCL2, the difficulty of writing and optimizing code using these frameworks
exclusively has led to the development of packages that enable run time code generation
(RTCG) using higher level languages [6]. Neurokernel uses the PyCUDA package to provide
RTCG support for NVIDIA’s GPU hardware without forgoing the development advantages

1http://www.nvidia.com/cuda
2http://www.khronos.org/opencl
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2.2 Biological Structures 6

afforded by Python [36].

Figure 1: The three-plane structure of the Neurokernel architecture is based on the prin-
ciple of separation of time scales. The application plane provides support for hardware-
independent specification of LPUs and their interconnects. Services that implement the
neural primitives and computing methods required to execute neural circuit model instan-
tiations on GPUs are provided by the compute plane. Translation or mapping of specified
model components to the methods provided by the compute plane and management of mul-
tiple GPUs and communication resources is performed by the control plane operating on a
cluster of CPUs.

2.2 Biological Structures

A successful determination of how the brain’s highly complex structure implements specific
functions requires its decomposition into functional modules whose input-output relation-
ships can be individually analyzed and whose interactions can be explained in terms of the
groups of synaptic connections that exist between them [3]. Analysis of the Drosophila con-
nectome has revealed that its brain can be decomposed into fewer than 50 distinct neural
circuits, most of which correspond to anatomically distinct regions in the fly brain [10, 44].
These regions, or neuropils, include sensory processing structures such as the olfactory sys-
tem’s antennal lobe and the vision system’s lamina and medulla, as well as higher level
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structures such as the protocerebral bridge that receive input from sensory LPUs (Fig. 2).
Most of these modules are referred to as local processing units (LPUs) because they are char-
acterized by unique populations of local neurons whose processes are restricted to specific
neuropils.

The axons of an LPU’s local neurons and the synaptic connections between them and
other neurons in the LPU constitute an internal pattern of connectivity that is distinct from
the bundles, or tracts, of projection neuron processes that transmit data to neurons in other
LPUs (Fig. 2); this suggests that the local neuron population is integral to determining
an LPU’s functional properties. The fly brain also comprises modules known as hubs that
contain no local neurons; they appear to serve as communication relays between different
LPUs. In contrast to a purely anatomical subdivision, the decomposition of the brain into
functional modules casts the problem of reverse engineering the brain as one of discovering
the processing performed by each individual LPU and determining how specific patterns of
axonal connectivity between these LPUs integrates them into functional subsystems. Specifi-
cation and interconnection of models of these functional modules constitute the fundamental
design requirements of Neurokernel’s application plane.

Figure 2: Modular structure of fly brain. Individual LPUs, hubs, and tracts are identified
by different colors; for example, the central green structures in the left-hand figure are the
antennal lobes, while the large peripheral cyan structures are the medullae. Most LPUs are
paired across the fly’s two hemispheres. Tracts depicted in the right-hand figure may connect
pairs of LPUs located in each hemisphere or within a single hemisphere ([10], reproduced
with permission).

2.3 Architecture Components

To enable integration of models of the LPUs and tracts respectively depicted in Fig. 2
into models of functional subsystems (Fig. 4), Neurokernel defines an API for creating LPU
models that can interface with other Neurokernel-enabled model implementations. This API
consists of a set of Python base classes from which all LPU models must be derived. These
classes provide LPU designers with the freedom to organize the internal structure of their
model implementations largely as they see fit; the classes require that (1) each LPU in
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an emulation be uniquely identified, (2) that all operations performed by a single step of
the LPU’s execution be exposed in a single method, and that (3) an LPU must advertise
the number of communication ports it publicly exposes to send or receive data to enable
Neurokernel’s communication mechanism to determine the size of the data arrays that must
be transmitted between LPUs. An LPU’s input and output ports can be thought of as re-
spectively corresponding to the dendrites and axons of its exposed neuron. Neurons that do
not communicate with other LPUs and the internal connectivity patterns defined between
neurons within an LPU are not made accessible through the LPU’s interface (Fig. 3). Neu-
rokernel’s LPU API distinguishes between ports that transmit spikes or graded-potential
neuron states in order to enable transmission of both. It should be noted that the cur-
rent LPU interface is not intended to be final; we anticipate its gradual extension to more
accurately account for the range of neural interactions found in the fly’s connectome.

Figure 3: LPU components and interface. Internal connectivity patterns (gray) consist of
the axons of local neurons (red), the axons of projection neurons (blue) that connect both
to neurons within and external to an LPU, and the synapses associated with all dendrites
within the LPU; these patterns are not externally accessible. Inter-LPU connectivity patterns
(green) exclusively describe the connectivity patterns of the axons of projection neurons in
one LPU that project to neurons in another LPU.

Neurokernel also defines a representation for inter-LPU connectivity patterns; these cor-
respond to the tracts described in Fig. 2. By separating the internal processing logic of an
LPU from its external connectivity, Neurokernel enables the testing of different hypotheses
regarding internal and external connectivity patterns; for example, different models of a
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single LPU can be evaluated when “plugged into” the same external connectivity fabric. A
connectivity pattern between two LPUs is represented as two incidence matrices that respec-
tively describe the presence (or absence) of axons from projection neurons in each LPU to
neurons in the other LPU; Neurokernel provides a Python class for storing this connectivity
information as a sparse multidimensional array. In addition to their use in determining how
much data to transmit between LPUs, the number of neurons exposed by each LPU is also
used by Neurokernel to validate connections defined between it and other LPUs; an LPU
that exposes specific numbers of spiking and graded potential ports may only be connected to
other LPUs using connectivity patterns that are compatible with those numbers. Although
spiking and graded potential ports must be separately identified, the LPU API permits one
to define connections between either neuron type. LPU designers must ensure that their
models can properly process both transmitted spikes and graded potentials; likewise, each
LPU must also implement the synapses associated with the dendrites that correspond to an
LPU’s input ports.

In addition to the classes required to represent LPUs and connectivity patterns, Neuroker-
nel provides two additional classes that provide various services required to manage instances
of LPUs and connectivity patterns: (1) The communications broker class constructs a rout-
ing table using specified LPU connectivity data and uses it to automatically transfer data
between LPUs at each step of model execution; this obviates the need for implemented LPUs
to explicitly invoke the communication mechanism that actually propagates data between
LPUs. (2) The emulation manager class provides methods for incorporating LPU instances
into an emulation and connecting them with connectivity patterns using the communications
broker class. Once fully instantiated, the emulation can be run for a specified interval by
the manager class.

Apart from the API requirements discussed above, Neurokernel currently places no ex-
plicit restrictions upon an LPU model’s contents, how it interacts with available GPUs, or
the topology of interconnections between different LPUs; compatible LPUs and inter-LPU
patterns may be arbitrarily composed to construct subsystems (Fig. 4). Neurokernel’s cur-
rent service classes support instantiation and execution of a brain emulation on a single
computer containing multiple GPUs. Communication between LPU instances in a running
emulation is currently performed using ZeroMQ3, a highly flexible networking stack with
low end-to-end latency; this will enable future extension of Neurokernel to run emulations
on computer clusters.

2.4 Using the Neurokernel Framework

In addition to advertising the numbers of graded potential and spiking ports it exposes,
every LPU must provide a run step() method that processes incoming neuron state data
from source modules, updates the states of the module’s neurons, and provides the updated
states of its exposed projection neurons for transmission to destination modules:

from neurokernel.core import Module

3http://zeromq.org
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2.4 Using the Neurokernel Framework 10

Figure 4: Hierarchy of modeling components in a Neurokernel fly brain model. LPUs and
connectivity patterns may be composed into subsystems (red, green) which may in turn be
connected to other subsystems.

class MyLPU0(Module ):

gpot_data = np.zeros(5, float)

spike_data = np.zeros (10, int)

# Numbers of graded potential and spiking ports:

@property

def N_gpot(self):

return len(self.gpot_data)

@property

def N_spike(self):

return len(self.spike_data)

# Process incoming data and set outgoing data:

def run_step(self , in_gpot_dict , in_spike_dict ,

out_gpot , out_spike ):

super(MyModule , self). run_step(in_gpot_dict , in_spike_dict ,

out_gpot , out_spike)

# Use incoming data from ‘in_gpot_dict ‘ and

# ‘in_spike_dict ‘ to compute presynaptic inputs to internal neurons:

# ...

# Set contents of ‘out_gpot ‘ and ‘out_spike ‘

# using updated projection neuron states:

Neurokernel RFC #1 - v1.0
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# ...

Neuron state data generated by each LPU is propagated to the relevant destination LPUs
by Neurokernel before the next iteration of the emulation’s execution. LPU implementations
are responsible for transferring generated data for graded potential and spiking neurons from
GPU memory to the arrays out gpot and out spike, respectively. Since updated graded
neuron states must be propagated at each step of model execution, the length of out gpot is
fixed to the number of graded potential neurons exposed by the LPU; the index of each array
element identifies the originating neuron. The out spike array contains the indices of those
spiking neurons that have emitted spikes at the current model execution step; its length may
therefore change during model execution. Data transmitted to an LPU is accumulated in the
dictionaries in gpot dict and in spike dict for use in the LPU’s internal computations;
the keys of this dictionary correspond to the originating LPUs’ unique identifiers, while the
values possess the same structure as out gpot and out spike.

Connectivity patterns between LPUs may be constructed directly in Python using the
data structure described in § 2.3. For example, one may define the presence of feed-forward
connections from all output ports exposed by one LPU to all input ports exposed by another
as follows; note that the connections may be referenced specifically in terms of the source and
destination port types. For simplicity, Neurokernel does not require that a port be explicitly
labeled as receiving input or emitting output; it is up to the LPU designer to determine
whether to produce or consume data via a port.

import numpy as np

from neurokernel.core import Connectivity

conn = Connectivity(m1.N_gpot , m1.N_spike ,

m2.N_gpot , m2.N2_spike , 1,

m1.id , m2.id)

conn[m1.id , ’all’, :, m2.id , ’all’, :] = \

np.ones((m1.N_gpot+m1.N_spike ,

m2.N_gpot+m2.N_spike ))

In addition to manually specifying inter-LPU connectivity patterns using the above data
structure, Neurokernel supports loading connectivity patterns from GEXF4 files. A GEXF
file that describes a connectivity pattern between the ports exposed by two LPUs respectively
named A and B must contain a multigraph that comprises two groups of nodes labeled A:0,

A:1, ... and B:0, B:1, ..., with edges between these groups defining the connections
between the LPUs. Neurokernel also supports loading of internal neural and synaptic model
parameters from GEXF files; GEXF representations of the LPU models described in § 3 are
included with the Neurokernel source code. Inter-LPU connections currently remain static
throughout an emulation; future versions of Neurokernel will support dynamic instantiation
and removal of connections while a model is being executed.

After all LPUs and connectivity patterns are instantiated, the emulation may be launched
as follows:

from neurokernel.core import Manager

4http://gexf.net
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man = Manager ()

man.add_brok ()

m0 = man.add_mod(MyLPU0(man.port_data , man.port_ctrl ))

m1 = man.add_mod(MyLPU1(man.port_data , man.port_ctrl ))

man.connect(m0 , m1 , conn)

# Set emulation to run a specific number of execution steps:

duration = 10.0

dt = 1e-2

man.start(int(duration/dt))

man.stop()

When a Neurokernel emulation is launched, the run step method is invoked at each time
step of a model’s execution by Neurokernel’s emulation manager.

3 Results

To demonstrate and test Neurokernel’s support for interfacing functional brain modules, we
have used it to integrate independently implemented models of LPUs in the olfactory and
vision sensory systems constructed using experimentally obtained connectivity information.
These models are briefly described below; IPython notebooks containing more information
about the models and the results of their execution are available on the Neurokernel website
(http://neurokernel.github.io/docs.html).

3.1 Olfactory System Model

The early olfactory system in Drosophila consists of two antennal lobes, one on each side
of the fly brain. Each of these LPUs contain 49 glomeruli that differ in functionality, size,
shape, and relative position. Each glomerulus receives axons from about 50 olfactory receptor
neurons (ORNs) on each of the fly’s two antennae that express the same odorant receptor.
The axons of each ORN connect to the dendrites of 3 to 5 projection neurons (PNs) in the
glomeruli. In addition to the PNs - which transmit olfactory information to the higher regions
of the brain - the antennal lobes contain local neurons (LNs) whose connections are restricted
to the lobes; inter-glomerular connectivity therefore subsumes synaptic connections between
ORNs and PNs, ORNs and LNs, LNs and PNs, and feedback from PNs to LNs. The entire
early olfactory system in Drosophila contains approximately 4000 neurons. [75]

The current model of the each antennal lobe comprises 49 glomerular channels with
full intraglomerular connectivity in both hemispheres of the fly brain. The entire model
comprises 2800 neurons, or 70% of the fly’s entire antennal lobe. All neurons in the sys-
tem are modeled using the Leaky Integrate-and-Fire (LIF) model [37] and all synaptic
currents elicited by spikes are modeled using alpha functions [63]. Parameters for 24 of
the glomerular channels are based upon currently available ORN type data [22]; all other
channels are configured with artificial parameters. In accordance with Neurokernel’s mod-
ule API, all projection neurons comprised by the glomeruli may emit output visible to
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3.2 Vision System Model 13

other LPUs; the local interneurons that connect glomeruli do not emit any output to other
LPUs. A more detailed description of the implementation of the fruit fly olfactory system
is available at http://nbviewer.ipython.org/github/neurokernel/neurokernel/blob/
master/notebooks/olfaction.ipynb.

3.2 Vision System Model

In addition to the retina where the photo-transduction takes place, the optic lobe of the
Drosophila can be divided into 4 major LPUs on each side of the fly brain respectively
referred to as the lamina, medulla, lobula and lobula plate. Visual information progresses
along a processing path that starts at the retina and successively passes through the lamina,
medulla, and either the lobula or the lobula plate. The spatial structure of the visual stimulus
is preserved by the retinotopic columnar organization of most of these LPUs.

There are at least 120 different types of neurons in the optic lobe [17]. Most of the neurons
in the optic lobe (if not all) do not emit spikes; rather, they communicate via chemical
synapses where neurotransmitter is tonically released based on the graded potential of the
presynaptic neurons. The synapses can have varying amount of delays based on the different
neurotransmitters. Many neurons in the optic lobe also communicate through gap junctions.

The current vision system model is based upon available connectome data for the lamina
[67] and medulla [17, 23]. The model consists of two LPUs; the first contains 9516 neurons
(or about 90% of the cells) in the retina and lamina, while the second contains 6920 (or
about 17% of the cells) in the medulla and several neurons that connect to both the medulla
and first layer of the lobula. All neurons are modeled using the Morris-Lecar model [50] with
parameters selected to not elicit spiking activity. Synapses are modeled using a simple model
of tonic neurotransmitter release and its effect upon postsynaptic conductance. The model
does not currently comprise gap junctions. A more detailed description of the implementation
of the fruit fly olfactory system is available at http://nbviewer.ipython.org/github/

neurokernel/neurokernel/blob/master/notebooks/vision.ipynb.

3.3 Subsystem Integration Models

To illustrate integration of individual sensory LPUs into functional subsystems, we connected
the vision and olfactory models described above to an independently developed LPU that
detects correlated visual and olfactory stimulus events (Fig. 5). This LPU contains 8 spiking
neurons modeled as LIF neurons that receive inputs from 8 wide field tangential neurons in
the medulla model; the latter innervate 4 vertical and 4 horizontal groups of columns in the
medulla. It should be noted that the integration circuit does not explicitly model a specific
known biological LPU. Rather, it demonstrates Neurokernel’s ability to enable experimen-
tation using multiple LPUs independently designed by different researchers. A snapshot
of the model’s response to multimodal stimuli is depicted in Fig. 6; an animation of the
model’s output may be viewed at http://nbviewer.ipython.org/github/neurokernel/

neurokernel/blob/master/notebooks/sensory_integration.ipynb.
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Figure 5: Integration of vision and olfactory models. The outputs of independently developed
LPUs (retina/lamina and medulla in the vision system and antenna/antennal lobe in the
olfactory system) are fed to a multisensory integration LPU that responds to correlated
visual and olfactory stimulus events.
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Figure 6: Snapshot of multisensory integration model output. The first row depicts snapshots
of a visual stimulus, while the second depicts a profile of the olfactory stimulus. The raster
plot on the third row depicts the output of a coincidence detection model that responds to
concurrent events associated with odorant and visual stimuli.
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4 Discussion

Neuromorphic platforms whose design is directly inspired by the brain have the potential
to execute large-scale models with limited functionality at speeds that significantly exceeds
those achievable with traditional von Neumann computer architectures [70, 72, 64, 15, 62].
The limited availability and potentially high costs of the various neuromorphic hardware
systems currently under development, however, constrains the growth of the development
communities needed to facilitate the use and improvement of such platforms. Although the
usability of neuromorphic platforms is increasing due to the support of high-level software
interfaces such as PyNN [13], they still afford less programming flexibility than commodity
computing platforms. GPU-based neural emulation platforms such as Neurokernel, by con-
trast, capitalize on a cost-effective parallel computing resource whose use in a wide range
of applications enables computational neuroscientists to avail themselves of the flourishing
GPU software development community to support the increasingly complex models that
will be needed to accurately emulate the fly brain. Such platforms also stand to benefit
from the already-rapid improvement in GPU performance driven by the increasingly high
computational requirements of computer games.

There exist a wide range of general-purpose neural simulation packages [8, 21] that pro-
vide highly flexible programming interfaces that permit the quantitative description of a wide
range of neural circuit models in terms of individual or homogeneous populations of neurons
and synapses. The limited support currently afforded by these packages for GPU hardware
has spurred the recent development of an array of GPU-based simulators for spiking neural
networks [53, 16, 52, 55]. Most of these simulators are capable of executing spiking neural
network models containing numbers of neurons and synapses comparable to the numbers
found in the fruit fly brain. Additionally, some of these simulators have also demonstrated
that the execution time of large networks that cannot currently be executed in real time
can be appreciably reduced by partitioning the networks across multiple GPUs; for example,
one such simulator exhibits a speed increase of almost 20% when simulating 100 seconds of
activity if the number of GPUs used is increased from 32 to 160 [48]. In light of continuous im-
provements in both GPU performance and the achievable data transfer throughput between
GPUs, we project that near-real-time performance for a whole fly brain model comprising
both spiking and graded potential neurons using a number of GPUs within the above range
will be achievable in a few years time given widely predicted architectural improvements in
GPU technology.

Despite the impressive performance GPU-based spiking neural network software can
achieve for simulations comprising increasingly large numbers of neurons and synapses, they
and other simulator packages do not adequately address the architectural complexity of
modeling the entire fly brain either in the design phase when multiple designers need to
combine their respective contributions or in the run time phase when the emulated system
must efficiently avail itself of available computational resources. Just as the architectural
complexity of a PC is quite different from that of a microprocessor and hence requires quite
different tools and methodologies in design, so too does an emulation of the entire fly brain
require a platform that provides services and scalability that go beyond the features of cur-
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rent general-purpose neural circuit simulators. Neurokernel aims to remedy this lacuna by
providing both the high-level APIs needed to modularly develop whole brain models and
the low-level computational substrate required to enable those models’ implementations to
scalably leverage multiple GPUs.

In light of their increasing availability and low costs, there is growing interest in lever-
aging the power of multiple GPUs to support increasingly large-scale neural simulations
[74, 54, 48]. We believe that the current trajectory of GPU technology points to the devel-
opment of an increasingly asynchronous parallel computing platform in which multiple GPUs
constitute a “first-class” resource that are not architecturally subordinated to a computer’s
microprocessor [29]. In addition to obtaining the near-term advantages of using currently
available GPU technology to accelerate execution of neural models, Neurokernel aims to
provide a software foundation that can be extended to support anticipated improvements in
GPU technology.

A fundamental modeling limitation of existing neural simulator packages is their lack of
support for studying emergent functions that cannot be exclusively attributed to a single
circuit or module in the brain. Fly locomotion, for instance, is evidently mediated by pre-
motor processing that integrates multiple sensory modalities [78]. The difficulty of modeling
such behaviors is compounded by the incompatibility of independently developed models of
specific processing units in the brain. Although resources for model sharing [24, 20] and
interoperability [19] have facilitated the sharing of computational neural models, researchers
who wish to build upon existing models must still manually extract and reimplement the
relevant portions of those models to incorporate into their work. This lack of interoperability
severely hampers the extent to which neuroscientists can progress from modeling individual
neural circuits to emulation of the entire brain. Neurokernel will mitigate this problem by
ensuring compatibility between LPU models that adhere to the APIs it provides.

A mechanism for connecting neural elements using interface ports that support commu-
nication of both spike and analog data was implemented in the PCSIM neural simulator [60].
Such elements can also encapsulate internal implementations written using other simulation
packages. The software also enabled the specification of sets of multiple connections between
elements. Although PCSIM is able to scale over multiple CPUs and can in principle enable
encapsulation and integration of GPU-based circuit models, the software itself does not na-
tively support the use of GPUs and provides no infrastructure for scaling across multiple
GPUs. Additionally, development of PCSIM appears to have stalled as of 2010.

Neurokernel bears similarities to other ongoing efforts to develop connectome-based emu-
lations of the neural circuitry of other relatively tractable model organisms. The OpenWorm
project5, for instance, is currently developing several open software technologies for modeling
of the entire neuromuscular system of the nematode Caenorhabditis elegans [59]. It capi-
talizes on the extremely small number of neurons in the worm’s nervous system and the
full reconstruction of its connectome [79]. While reconstruction of the fly connectome is
still in progress, we anticipate that ongoing advances in our understanding of the fly brain’s
connectivity [12, 10, 44, 73] will provide an increasing amount of information that can be

5http://www.openworm.org/
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incorporated into models of the fly’s brain.

5 Future Development

Having implemented the APIs within Neurokernel’s application plane that enable integration
of independently developed models of LPUs and connectivity patterns, our next major goal
is to implement the APIs exposed by Neurokernel’s control and compute planes that will
enable construction of LPU models without having to explicitly implement LPU models
using Python and CUDA. To this end, we are incorporating support for a modular model
specification format that will capitalize on the identification of canonical circuits in the fly’s
sensory systems [39] to enable the construction of LPU models in terms of predefined circuits
rather than populations of neurons and synapses [9]. The mechanism responsible for loading
models expressed in this format will generate the GPU code needed to execute the models.

Although Neurokernel currently permits brain models to make use of multiple locally
hosted GPUs, it requires programmers to explicitly manage the GPU resources used by a
model’s implementation. We aim to implement a prototype GPU resource allocation compo-
nent to obviate the need to explicitly select and manage individual GPUs when constructing
a fly brain model. This mechanism will permit experimentation with different allocation
policies as LPU models become more complex. We are also extending Neurokernel’s commu-
nication mechanism to take advantage of NVIDIA’s GPUDirect technology for accelerated
communication between GPUs [56, 57] to improve the performance of brain emulations that
require the use of multiple GPU resources.

The future availability of new connectome and experimental data will necessitate the
modification and reevaluation of existing fly brain models. As Neurokernel’s model ex-
ecution efficiency enables model execution to approach the time scale of the actual fly
brain, researchers will be able to compare the input-output characteristics of specific vir-
tual neurons in a running model with their counterparts in the live fly’s brain using in-
creasingly precise electrophysiological techniques and novel system identification techniques
[33, 35, 40, 41, 42, 43]. This will enable researchers to perform real-time in vivo validation
of a model’s correctness (Fig. 7).

The scope of Neurokernel’s goals and the need to support the revision of models in light
of new data requires a structured means of advancing the framework’s design. To this end,
the Neurokernel project employs Requests for Comments documents (RFCs) as a tool both
for advancing the design of Neurokernel architecture and the LPU models built with it. First
employed in the development of the Internet [5] and used more recently in the development
of the Python programming language in the guise of Python Enhancement Proposals (PEPs)
[77], RFCs are publicly accessible design proposals for major new components or features of
a complex computing system made by the system’s developers and other interested parties
in order to elicit feedback (or “comments”). Once published, an RFC may be superseded by
a newer RFC that incorporates modifications made in response to feedback. This process
enables RFCs to both serve as authoritative specifications of a system’s design (if accepted
for implementation) and an archive of that system’s design development (if rejected or su-
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Figure 7: In vivo validation is essential to the development of accurate fly brain models.
Neural responses to sensory stimuli are recorded from the live fly brain in real time and
compared to the computed responses of the corresponding components in a fly brain model
executed by Neurokernel on the same time scale. Discrepancies between these responses and
new connectome data may be used to improve the model’s accuracy (fly photograph adapted
from Berger and fly robot image adapted from Vizcano, Benton, Gerber, and Louis, both
reproduced with permission).

perseded by a newer RFC). All current and future Neurokernel RFCs will be available on
the project website http://neurokernel.github.io/docs.html.

6 Conclusion

Development of an accurate model of the entire fruit fly brain has the potential to provide
important insights essential to successfully modeling the human brain. Despite the fly brain’s
relative numerical tractability, its successful emulation is an ambitious goal that will require
the joint efforts of multiple researchers from different disciplines. Neurokernel’s open design,
support for commodity parallel computing technology, and ability to integrate independently
developed models of the brain’s functional subsystems all facilitate this joining of forces. The
framework’s first release is a step in this direction; we expect and anticipate that aspects of
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the current design such as connectivity structure and module interfaces will be superseded
by newer designs informed by the growing body of knowledge regarding the structure and
function of the fly brain. We invite the research community to join this effort on Neurokernel’s
GitHub website 6 and development mailing list 7.
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